Dynamics of Combustion Waves: From Flames to Detonation
- Contents
- Lecture I: Order of magnitude
- Lecture II: Governing equations
- Lecture III: Thermal propagation of flames
- Lecture IV: Hydrodynamic instability of flames
- Lecture V: Thermo-diffusive phenomena
- Lecture VI: Thermal quenching of flames and flammability limits
- Lecture VII: Flame kernels and quasi-isobaric ignition
- Lecture VIII: Thermo-acoustic instabilities. Vibratory flames
- Lecture IX: Turbulent flames
- Lecture X: Supersonic waves
- Lecture XI: Initiation of detonations
- Lecture XII: Galloping detonations
- Lecture XIII: Stability analysis of shock waves
- Lecture XIV: Nonlinear dynamics of shock waves.
Triple point and Mach stem formation. - Lecture XV: Cellular detonations
Combustion Chemistry:
- Thermochemistry
- Chemical Physical and Thermochemical Properties of Hydrocarbons
- Basic Chemical Kinetics
- Bimolecular Reaction Rate Coefficients
- Unimolecular Reactions
- Homogeneous Reacting Flow Without Transport Influence
- Laminar Premixed Flames
Quantitative Laser Diagnostics for Combustion Chemistry and Propulsion
- Course Schedule
- Lecture 1: Overview and Introductions
- Lecture 2: Diatomic Molecular Spectra
- Lecture 3: Diatomic Molecular Spectra
- Lecture 4: Polyatomic Molecular Spectra
- Lecture 5: Quantitative Emission/ Absorption
- Lecture 6: Spectral Lineshapes
- Lecture 7: Electronic Spectra of Diatomics
- Lecture 8: Case Studies of Molecular Spectra
- Lecture 9: Tunable Diode Laser Absorption Spectroscopy (TDLAS)
- Lecture 10: TDLAS Applications in Energy Conversion
- Lecture 11: Shock Tube Techniques
- Lecture 12: Shock Tube Applications - with Lasers
- Lecture 13: Laser-Induced Fluorescence (LIF)
- Lecture 14: Laser-Induced Fluorescence: Applications (Part 1)
- Lecture 15: Laser-Induced Fluorescence: Applications (Part 2)
Computational Turbulent Combustion