Lecture Notes

 

Dynamics of Combustion Waves: From Flames to Detonation

  1. Contents
  2. Lecture I: Order of magnitude
  3. Lecture II: Governing equations
  4. Lecture III: Thermal propagation of flames
  5. Lecture IV: Hydrodynamic instability of flames
  6. Lecture V: Thermo-diffusive phenomena
  7. Lecture VI: Thermal quenching of flames and flammability limits
  8. Lecture VII: Flame kernels and quasi-isobaric ignition
  9. Lecture VIII: Thermo-acoustic instabilities. Vibratory flames
  10. Lecture IX: Turbulent flames
  11. Lecture X: Supersonic waves
  12. Lecture XI: Initiation of detonations
  13. Lecture XII: Galloping detonations
  14. Lecture XIII: Stability analysis of shock waves
  15. Lecture XIV: Nonlinear dynamics of shock waves.
    Triple point and Mach stem formation.
  16. Lecture XV: Cellular detonations

Combustion Chemistry:

  1. Thermochemistry
  2. Chemical Physical and Thermochemical Properties of Hydrocarbons
  3. Basic Chemical Kinetics
  4. Bimolecular Reaction Rate Coefficients
  5. Unimolecular Reactions
  6. Homogeneous Reacting Flow Without Transport Influence
  7. Laminar Premixed Flames

Quantitative Laser Diagnostics for Combustion Chemistry and Propulsion

  1. Course Schedule
  2. Lecture 1: Overview and Introductions
  3. Lecture 2: Diatomic Molecular Spectra
  4. Lecture 3: Diatomic Molecular Spectra
  5. Lecture 4: Polyatomic Molecular Spectra
  6. Lecture 5: Quantitative Emission/ Absorption
  7. Lecture 6: Spectral Lineshapes
  8. Lecture 7: Electronic Spectra of Diatomics
  9. Lecture 8: Case Studies of Molecular Spectra
  10. Lecture 9: Tunable Diode Laser Absorption Spectroscopy (TDLAS)
  11. Lecture 10: TDLAS Applications in Energy Conversion
  12. Lecture 11: Shock Tube Techniques
  13. Lecture 12: Shock Tube Applications - with Lasers
  14. Lecture 13: Laser-Induced Fluorescence (LIF)
  15. Lecture 14: Laser-Induced Fluorescence: Applications (Part 1)
  16. Lecture 15: Laser-Induced Fluorescence: Applications (Part 2)

Computational Turbulent Combustion