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Benzene + O(3P) - Products

e Qverall rate coefficient extensively studied, but the products and branching

ratios not well known.

e Theoretical challenges in dealing with spin-state
crossing.

e Product distributions determined over 300 to 1000
K and 1 to 10 Torr (with Taatjes/Sandia).

e Cyclopentadiene was directly identified for the first
time, in addition to phenol and phenoxy.

e ab initio calculations (with Krylov/ USC) and master
equation/RRKM modeling for data extrapolation.

Taatjes, C. A,, Osborn, D. L., Selby, T. M., Meloni, G., Trevitt, A. J., Epifanivskii, E. Krylov, A. I,
Sirjean, B., Dames, E., Wang, H. “Products of the benzene + O(3P) reaction,” Journal of
Physical Chemistry A, 114, 3355-3370 (2010)
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Figure 1. Branching ratios observed as a
function of temperature at 4 Torr for (a)
m/z=94/93 and m/z=66/65 by magnetic sector
mass spectrometer (filled symbols) and time-of-
flight mass spectrometer (open symbols), and (b)
branching ratios determined by time-of-flight
mass spectrometer. Lines are drawn to guide the
eye. Error bars are 2o-standard deviations.



Benzene + O(3P) - Products
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Benzene + O(3P) - Products

Table 6. Branching ratios experimentally determined and computed for reaction R1.

Branching ratio

Reaction channel P (Torr) T (K) Experimental Computational
CeHsOH (9) 4 700 0.58 + 0.08° 0.56 (0.65)"

4 800 0.47 + 0.08° 0.43 (0.50)°

4 900 0.33 +0.08° 0.29 (0.37)"

10 800 0.59 + 0.08° 0.51 (0.61)"

10 900 0.41 + 0.09% 0.40 (0.49)°
CeHs0e (3) + He 4 700 0.18 + 0.08° 0.18

4 800 0.24 +0.10° 0.21

4 900 0.33+0.13° 0.23

10 800 0.19 + 0.09° 0.21

10 900 0.28 +0.12° 0.23
CsHs (11) + CO 4 700 0.22 + 0.05 0.17

4 800 0.27 + 0.06 0.29

4 900 0.33 +0.08° 0.40

10 800 0.21 + 0.05 0.18

10 900 0.27 +0.07° 0.28



Kinetic Modeling Studies of Iso-butane and
Iso-butene Combustion (work-in-progress)

Chemical kinetic submodel of iso-butanol combustion.

In collaboration with N. Hansen/Sandia through Bin Yang (roving postdoc).
A total of 61 datasets considered, including two burner stabilized flames (30
Torr) probed by Synchrotron Photoionization Molecular Beam Mass
Spectrometry (Hansen/Yang).

Preliminary results show that USC Mech Il behaves rather well against the
data, but improvements are needed for the initial pyrolysis and oxidation of
isobutane and isobutene.

Iso-butane-air (p = 1 atm, T = 300 K) Iso-butene-air (p = 1 atm, T,= 300 K)
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Kinetic Modeling Studies of Iso-butane and
Iso-butene Combustion (work-in-progress)

Chemical kinetic submodel of iso-butanol combustion.

In collaboration with N. Hansen/Sandia through Bin Yang.

A total of 61 datasets considered, including two burner stabilized flames (30
Torr) probed by Synchrotron Photoionization Molecular Beam Mass
Spectrometry.

Preliminary results show that USC Mech Il behaves rather well against the
data, but improvements are needed for the initial pyrolysis and oxidation of
isobutane and isobutene.
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Sooting Behaviors of n- and iso-Butanol Flames
(Work-in-Progress)

e Fuel-rich chemistry and sooting behaviors of butanol isomers are unknown.

e Soot formation characterized in burner-stabilized stagnation flames.
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Sooting Behaviors of n- and iso-Butanol Flames

(Work-in-Progress)

dN/dlogD, (cm3)

Fuel-rich chemistry and sooting behaviors of butanol isomers are unknown.

Soot formation characterized in burner-stabilized stagnation flames.

No significant difference between n-butanol and isobutanol in particle
inception and soot mass growth.

Soot formed show a strong and persistent nucleation behavior well into the

post flame.

In comparison to comparable ethylene flames, soot inception in butanol
flames takes substantially longer reaction time, but once nucleation starts,
surface reaction is as fast as the ethylene flames.
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PAH Precursor Chemistry (1)

Spectral sensitivity of pyrene concentration

90 Torr burner stabilized C,H,/O,/Ar flame
PAH formation is sensitive to a (Bockhorn), H = 0.55 cm

multitude of elementary reactions

.. HO P onOH Main flame
and local flame conditions. HO+OH=05+Hz0 chemistry

HCO+02=CO+HO>
CH+H>=CHy+H
CH2+02=CO2+H+H
CH2*+H2=CHs+H

Accurate prediction of PAH formation e
CoHot+H(EM)=CoHs(+M)

may require a precision in main HC%%E%E:;%;%%%
H 2H3+02=C2H30+
flame chemistry currently
. C2H2+CHz*fC3H3:H
unavailable. et *
C3H3+OH=C3H3+HCO First aromatic
C3H3+C3H3=>A; ‘ ring

c-CgHg+H=A1-
C4Ho+H=n-C4H3

PAH formation can be highly sensitive
AvtH=A1-+H, Aromatic growth
to fuel structures. Ninsbeser e chemistry

n-A1CoH2+CoHo=Ao+H
Ax+OH=A2-1+H20
Az-1+H(+M)=A2(+M)

N 2C2HA*+H(+M)=A2C
Possibly a large number of pathways ooy
A2C2HA*+C2ﬁz=ﬁ3 -4
to PAHs have yet been considered. P bt

Az+H=A3-4+H>
Aa-4+HOEM)=A(+M)
Az-4+CoHy=A4+H
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Wang & Frenklach, C&F (1997)



PAH Precursor Chemistry (2)

Thermokinetic Origin of PAH Formation/Growth Beyond HACA
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e While HACA captures the thermokinetic requirements for PAH formation, its
reversibility opens it to competitions from other pathways



Soot Nucleation (1)
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Soot Nucleation (2)
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Soot Nucleation (3)

Is 25.4 kcal/mol enough to bind a pair of coronene together?

2 coronene -> (coronene),
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Soot Nucleation (1)
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Soot Nucleation (4)

* Polyacenes are singlet diradicals (though arguable).

e Ground-state polyacenes are close-shell singlets, but the adiabatic SO-T1
excitation energy is only 13 kcal/mol for heptacene - Hajgaté et al. (2009).

e Applications in organic light emitting diodes and organic semiconductors
and capacitors.

JACS
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Soot Nucleation (5)

zigzag edge

=1 2 3
e Zigzag edges of graphene have localized

s-electronic states

Kobayashi 1993; Klein 1994 J=1

e Zigzag edges have an open-shell singlet 2
ground state

e.g., Fujita et al. 1996; Nakada 1996 3

* Finite-sized graphenes have radical or

even multiradical characteristics.
e.g., Nakano et al. 2008, Nagai 2010

e Side chain can induce wt-radical

characteristics
Nakano et al. 2007

e Nonlinear optics applications.

NVARNVA
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Soot Nucleation - Summary

e |f PAHs with m-radicals do play a role in soot nucleation,
we need to

e Understand the nature and structures of these PAH
species,

e Determine their binding energies with relevant
species, including aromatics,

e Probe them in flames (however small their
concentrations may be),

e Account for the mechanism of their formation.



Work Summary

e Products of benzene + O(3P) reaction

e Kinetic modeling studies of iso-butane and
iIso-butene combustion

e Sooting behaviors of isobutanol and n-butanol
flames

e Aromatic t-diradicals in soot nucleation and
mass growth
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