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Lecture  6 
The Structure of a Planar Laminar Flame 
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νF Fuel + νO Oxidizer → Products

one-step, irreversible, global reaction
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Steady, one-dimensional equations 
We will use a “tilde” for the dimensional quantities 
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Integrating from - ∞ to + ∞ and using the BCs, yields 
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Assume the mixture is lean; this implies that the fuel is completed depleted 

Similarly for a rich mixture. Use the equation for YO  instead of that of YF  and 
assume now that all the oxidizer is depleted. 
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The residual fuel/oxidizer can be computed from 
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Integrating from - ∞ to + ∞ and using the BCs, yields 

YF = 0, YO =YOu (1!!)  for  ! <1

YO = 0, YF =YFu (1!!
!1) for  ! >1
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The problem is mathematically ill-posed because the reaction rate does not vanish at 
the far left (the cold boundary difficulty). The difficulty is due to the idealization 
(infinite domain) and the nature of the Arrhenius law.  
Can be resolved  
       (i) if the mixture is introduced at a finite location (i.e. a burner) 
      (ii) by introducing a switch-on temperature; i.e. multiply the RHS by H(T - Ti). 
These resolutions are not needed when the asymptotic solution for large activation 
energy is sought. 
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!! = !u; !T = Tu;  d !T / dx = 0; YF =YFu
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; !u = SL  as  x!"#

d !T / dx = dYF / dx = dYO / dx = 0  as  x!+#
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Governing equations Parameters 

length lf = Dth/SL (where Dth = λ/ρucp is the mixture thermal diffusivity),
speed u = ũ/SL, temperature T = T̃ /Tu density ρ = ρ̃/ρu

non-dimensionalization
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The Damköhler number 

D contains the unknown flame speed, SL , and is often referred 
to as the burning-rate eigenvalue.   

D =
(lf / SL )exp(!E / RTa )

[(!u/WF )nF!1(!u/WO )nO"FB]!1 =
lf / SL

[ !B exp(!E / RTa )]!1 =
flow time

reaction time

                Damkohler number

D =
(! / "ucp ) / SL

2

[ !B exp(!E / RTa )]
!1

!B = (!u/WF )nF!1(!u/WO )nO"FB        has units of 1/s
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    E / R ! 20 000K " 30 000K, Tu ! 300K, Ta ! 2 000 " 3000K       

exp("E/RTu ) ~ 10-28- 10-43; exp("E/RTa ) ~ 10-3- 10-6

!B ! 1012 "1017

For example, for methane oxidation
CH4 + 2 O2 → CO2 + 2 H2O

dY/dt = BY e−E/RT

E ≈ 160, 000 J/mol E/R ∼ 20, 000 and B = 1010 s

A note about the Arrhenius exponential

E/RT̃a ∼ 10 exp (−E/RT̃a) ∼ 2× 10−4

treaction ∼ [B exp (−E/RT̃a)]
−1 ∼ 2× 10−6s ∼ 2µs

E/RT̃u ∼ 65 exp (−E/RT̃u)× 10−28

treaction ∼ [B exp (−E/RT̃u)]
−1 ∼ 1018 s ∼ 1011 years

9 

 Le = Dth

Dm

=
thermal diffusivity (of the mixture)

mass diffusivity (of deficient reactant)

in lean mixtures: Dm = Dfuel  
in rich mixtures Dm = Doxidizer 

nonlinear eigenvalue problem for the determination of T, Y and D

dT

dx
− d2T

dx2
= qω

dY

dx
− Le−1 d

2Y

dx2
= −ω

dT/dx = 0, T = 1, Y = Yu

as x → −∞

T = Ta, Y = 0
as x → ∞

ω = DρnY n exp

�
β0

Ta
− β0

T

�

For simplicity of presentation we will consider first a mixture deficient in one
component; i.e either lean (fuel deficient) of rich (oxidizer deficient), for which
the excess component remains nearly unchanged1. We thus remove all sub-
scripts, and denote by Y the mass fraction of the deficient component.
Results for the general case will be presented later.

10 1 We are effectively considering the case R → P , for which the reaction is of
order n, or nF = n, nO = 0, and νF = 1.
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For β0 � 1, we see that ω is exponentially small, unless T − Ta ≈ β−1
0

typically, β ∼ 10

In the preheat zone the reaction rate is exponentially small because the expo-
nential term → 0 very rapidly. The reaction term becomes appreciable only in
the “reaction zone” where T is close to Ta. Beyond the reaction zone, Y ≡ 0
and the reaction rate vanishes identically.

β =
E(T̃a − T̃u)

RT̃ 2
a

ω = DρY n exp

�
β0

Ta
− β0

T

�
= DρY n exp

�
β0(T − Ta)

TTa

�

Activation energy asymptotics

The more appropriate expansion parameter is the reciprocal Zel’dovich number
β, rather than β0, where

β = β0
(Ta − 1)

T 2
a

⇒ ω = DρnY n exp

�
βTa

Ta − 1

T − Ta

T

�

11 

typically, lf ∼ 1mm
lR = Dth/βSL � lf

lf = Dth/SL

unburned 
gas 

  burned gas 
Preheat zone 

lf

lR

 

Y ω

Ta

T = 1

Y = Yu
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⇒

to all orders in β−1

dT

dx
− d2T

dx2
∼ 0

dY

dx
− Le−1 d

2Y

dx2
∼ 0

T = T (0) + β−1T (1) + . . .

Y = Y (0) + β−1Y (1) + . . .

Introduce

T ∼
�

1 + (Ta − 1)ex (x < 0)
Ta (x > 0)

Y ∼
�

Yu(1− eLex) (x < 0)
0 (x > 0)

where continuity at x = 0 has been applied

x = β−1ξ

the solution is not valid near
x = 0 (the reaction zone)
where ω is no longer negligible),
and must be reexamined
by rescaling the coordinate

with −∞ < ξ < ∞

Y 

T 
 0 x 
ξ 13 

Reaction zone solution

with the “eigenvalue” expanded as

introducing a stretching transformation, x = β−1ξ, into the governing equations,
we seek solutions of the form

T = Ta + β−1φ(ξ) + · · ·

Y = β−1ψ(ξ) + · · ·

the reaction zone is a diffusive-reactive zone,
with convection playing a secondary role

exp

�
βTa

Ta − 1

T − Ta

T

�
= exp

�
β

Ta − 1
(β−1φ+ · · · )

�
∼ exp [φ/(Ta − 1)]

the expansion of the exponential yields

D = βn+1Λ + · · ·

β−1 dφ

dξ
− d2φ

dξ2
+ · · · = qΛρn

b
ψneφ/(Ta−1)

β−1 dψ

dξ
− Le−1 d

2ψ

dξ2
+ · · · = −Λρn

b
ψneφ/(Ta−1)

here ρb is the (dimensionless) density of the burned gas = 1/Ta

14 
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T ∼
�

1 + (Ta − 1)ex (x < 0)
Ta (x > 0)

Y ∼
�

Yu(1− eLex) (x < 0)
0 (x > 0)

⇒
T ∼

�
Ta + β−1(Ta − 1)ξ as ξ → −∞
Ta as ξ → +∞

Y ∼
�

−β−1YuLeξ as ξ → −∞
0 as ξ → +∞

the behavior of T, Y as x → 0∓ or,
for x = β−1ξ as ξ → ∓∞

using

The solution for φ and ψ must match T and Y as ξ → ∓∞
dφ

dξ
∼ (Ta − 1),

dψ

dξ
∼ −YuLe as ξ → −∞

φ ∼ ψ ∼ 0, as ξ → +∞

d2φ

dξ2
= −qΛρn

b
ψneφ/(Ta−1)

Le−1 d
2ψ

dξ2
= Λρn

b
ψneφ/(Ta−1)

15 

Le
d2φ

dξ2
+ q

d2ψ

dξ2
= 0 ⇒ Leφ+ q ψ = 0

after use was made of the matching conditions

d2ψ

dξ2
= ΛLeρn

b
ψne−qψ/Le(Ta−1)

dψ

dξ
∼ −YuLe as ξ → −∞, ψ ∼ 0 as ξ → +∞

1

2

∞�

−∞

d

dξ

�
dψ

dξ

�2

dξ = ΛLeρn
b

0�

∞

ψne−qψ/Le(Ta−1)dψ

multipy by dψ/dξ and integrate from ξ = −∞ to ∞ (or from ψ = ∞ to 0)

1

2
Y 2
uLe

2 = ΛLen+2Y n+1
u ρn

b

∞�

0

Zne−ZdZ

� �� �
Γ(n+1)

= n! for n integer

a second integration is needed to obtain the actual profiles, but this need to be done numerically

D =
Le−n βn+1

2Γ(n+ 1)ρnb Y
n−1
u

16 
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Arbitrary reaction order n

For n = 1

T̃a = T̃u + (Q/cp)YuAdiabatic flame temperature

lf = λ/ρ̃ucpSLFlame thickness (thermal)

SL =

�
ρ̃b
ρ̃2u

2(λ/c̃p)B

β2 Le−1
e−E/2RT̃a

17 

SL =

�
ρ̃nb
ρ̃2u

2Γ(n+1)(λ/c̃p)BY n−1
u

Wn−1βn+1 Le−n
e−E/2RT̃a

Recall that we have been considering here the very lean (or very rich) case; i.e.,
the reaction is of order n in the deficient component and is independent of the
abundant reactant.

Comments:

• Most of the reaction occurs, in a narrow temperature interval near Ta

which is on the order β−1lf ≡ lR

• The preheat zone is the region where the temperature rises from Tu to
approximately Ta. Most of this increase (more than 99%) occurs in 5
units of length, so that the actual width of the preheat zone is ∼ 5lf

• The analysis could be easily extended to account for temperature-dependent
transport since this will only affect the preheat zone. The resulting profiles
(with λ measured with respect to its value in the unburned gas) are

T = 1 + (Ta − 1)e−
� 0
x

1
λdx�

Y = Yu[1− e−
� 0
x

1
λdx�

]

The consequence on the flame speed is that λ needs to be evaluated at Ta.

• To complete the solution we note that ρ = 1/T and u = T ; as a result of
gas expansion the density decreases and the gas speeds up. The pressure
drop across the flame, calculated from the momentum equation, is

p ∼
�

−(1− 4
3 Pr)(Ta − 1)ex (x < 0)

−(Ta − 1) (x > 0)
18 
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• It is possible to find the next correction to the burning rate eigenvalue.
For n = 1 if

D = β2(Λ0 + β−1Λ1 + · · · )

one finds

• The strong dependence of the Arrhenius rate, and hence of the flame
speed on temperature suggests that a small temperature variation cause
a significant change in speed; more precisely O(β−1) changes in Ta cause
O(1) changes in SL.

SL =

�
ρ̃b
ρ̃2u

2(λ/c̃p)B

β2 Le−1
e−E/2RT̃a

�
1 + β−1

�
1.344− 3 T̃a−T̃u

T̃a

��

19 

with φ = νYF u/YOu the equivalence ratio and ν = νOWo/νFWF .

SL =

�
ρ̃2b
ρ̃2u

2B(λ/cp)

β2
S e−E/2RT̃a

where S ∼






LeF
νFYOu

WO

[(1− φ) + 2β−1LeO φ] (φ < 1)

LeO
νOYF u

WF

[(1− φ−1) + 2β−1LeF φ−1] (φ < 1)

SL =

�
ρ̃2
b

ρ̃2u

4B(λ/cp)

β3Le−1
F

Le−1
O

νFYOu

WO

e−E/2RT̃a

• The effect of stoichiometry is found by considering a two-reactants system.
For n = 2, with nF = nO = 1, the flame speed generalizes to

• Note that at stoichiometry (φ = 1), the two expressions are identical and
reduce to

20 
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• The adiabatic flame temperature Ta exerts the strongest influence on SL,
so that reactions with larger values of heat release Q propagate faster
flames.

• The flame speed SL increases with increasing Tu.

• The flame gets thinner when increasing Q or Tu.

• The adiabatic flame temperature peaks at stoichiometry. The dependence
SL ∼

√
LeFLeO, however, suggests that there will be a shift in the peaking

of the flame speed towards the lean or rich side, depending on the fuel.
For hydrogen, for example, the peaking is towards the rich side because of
the the relatively low value of LeF that is dominant under lean conditions.

SL ∼ ρ̃b
n/2

ρ̃u
∼ P

n
2−1 lf = λ/ρucpSL ∼ P−n

2

• The dependence of SL, and hence of lf , on pressure depends on the reac-
tion order;

generally n < 2 and SL decreases slightly with pressure, but it is independent
of pressure for a second order reaction

The flame thickness, however, always decreases with increasing pressure

Some observations from the derived expressions

21 

SL ∼ ρ̃b
n/2

ρ̃u
∼ P

n
2−1 lf = λ/ρucpSL ∼ P−n

2

• The dependence of SL, and hence of lf , on pressure depends on the reac-
tion order;

generally n < 2 and SL decreases slightly with pressure, but it is independent
of pressure for a second order reaction

The flame thickness, however, always decreases with increasing pressure

22 
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Law, 2006

The strong dependence of SL on Ta (the Lewis number for methane is near one)

23 

Flame Phenomena in Premixed Combustible Gases 189

   The effect of the initial temperature of a premixed fuel–air mixture on the 
fl ame propagation rate again appears to be refl ected through the fi nal fl ame 
temperature. Since the chemical energy release is always so much greater than 
the sensible energy of the reactants, small changes of initial temperature gener-
ally have little effect on the fl ame temperature. Nevertheless, the fl ame propa-
gation expression contains the fl ame temperature in an exponential term; thus, 
as discussed many times previously, small changes in fl ame temperature can 
give noticeable changes in fl ame propagation rates. If the initial temperatures 
are substantially higher than normal ambient, the rate of reaction (4.63) can 
be reduced in the preheat zone. Since reaction (4.63) is one of recombination, 
its rate decreases with increasing temperature, and so the fl ame speed will be 
attenuated even further. 

   Perhaps the most interesting set of experiments to elucidate the dominant 
factors in fl ame propagation was performed by Clingman  et al .  [27] . Their 
results clearly show the effect of the thermal diffusivity and reaction rate terms. 
These investigators measured the fl ame propagation rate of methane in various 
oxygen–inert gas mixtures. The mixtures of oxygen to inert gas were 0.21/0.79 
on a volumetric basis, the same as that which exists for air. The inerts chosen 
were nitrogen (N 2 ), helium (He), and argon (Ar). The results of these experi-
ments are shown in  Fig. 4.23   . 

   The trends of the results in  Fig. 4.23  can be readily explained. Argon and 
nitrogen have thermal diffusivities that are approximately equal. However, 
Ar is a monatomic gas whose specifi c heat is lower than that of N 2 . Since the 

140

120

100

B
ur

ni
ng

 v
el

oc
ity

 (
cm

/s
)

80

60

40

20

4 6 8 10
CH4 in various airs (%)

12 14

N2

Ar

He

16
0

 FIGURE 4.23          Methane laminar fl ame velocities in various inert gas–oxygen mixtures (after 
Clingman  et al .  [27] ).    
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All mixtures have the same heat release. Ar and N2 have the same thermal

diffusivity, but Ta is larger for the Ar mixture because Ar has a lower cp (being

a monatomic gas).

The flame temperature of the He mixture, also a monatomic gas, is nearly that

of Ar, but the higher speed is due to the higher thermal diffusivity of He (higher

λ and lower ρ).

Clingman et al. 1953 

24 
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Law, 2006

The dependence of SL ∼
√
Le is evident here because of the wide variations in

Le, from 0.3 for leanto 2.3 for rich conditions.

25 

The flame speed increases with increasing Q (through Ta)

Q = 488.35
Q = 341.30
Q = 191.85
in kcal/mol

Law, 2006

26 
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Q = 1075
Q = 929
Q = 781
Q = 635
in kcal/mol

Law, 2006

indistinguishable effect because of the relatively small variations in Q

27 

Westbrook and Dryer, 1984

28 



6/26/2011 

Copyright ©2011 by Moshe Matalon. This 
material is not to be sold, reproduced or 
distributed without the prior written 
permission of the owner, M. Matalon. 15 

Y 

Tu 
 0 n 

Ta 

[Y ] = [T ] = 0

Q

�
ρD∂Y

∂n

�
+

�
λ
∂T

∂n

�
= 0

The asymptotic treatment shows that the reaction zone, as seen from the rela-
tively larger scale of the flame lf , is a discontinuity across which the variables
remain continuous but their derivatives jump. Furthermore, it states that the
flux of reactants to the sheet (determined from the internal structure of the
reaction zone) is an Arrhenius function of the flame temperature Tf .

[·] denotes the jump
across the reaction sheet located at n = 0,

∂/∂n is the directional derivative
along the normal to the sheet.

Summary and Generalization

In dimensional form (for reaction of order one)

29 

−ρD∂Y

∂n

����
n=0−

=
λ/cp√
ρD

�
2ρbB/β2 Yu e

−E/2RTf


