Turbulent Combustion Modeling

Combustion Summer School

2018

Prof. Dr.-Ing. Heinz Pitsch

Course Overview

Part II: Turbulent Combustion

- Turbulence
- Turbulent Premixed Combustion
- Turbulent Non-Premixed
 Combustion
- Turbulent Combustion Modeling
- Applications

- Moment Methods for reactive scalars
- Simple Models in Fluent: EBU,EDM, FRCM, EDM/FRCM
- Introduction in Statistical Methods: PDF, CDF,...
- Transported PDF Model
- Modeling Turbulent Premixed Combustion
 - BML-Model
 - Level Set Approach/G-equation
- Modeling Turbulent Non-Premixed Combustion
 - Conserved Scalar Based Models for Non-Premixed Turbulent Combustion
 - Flamelet-Model
 - Application: RIF, steady flamelet model

Balance Equation for Reactive Scalars

- The term "reactive scalar"
 - Mass fraction Y_{α} of all components $\alpha = 1, ... N$
 - Temperature T

$$\psi_i = (Y_1, Y_2, \dots Y_N, T)^{\mathsf{T}}$$

• Balance equation for ψ_i , i = 1, ..., N + 1

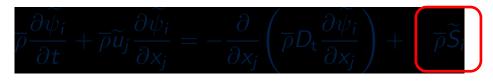
- D_i: mass diffusivity, thermal diffusivity
- S_i: mass/temperature source term

- Neglecting the molecular transport (assumption: Re个)
- Gradient transport assumption for the turbulent transport

$$-\widetilde{u_j''\psi_i''}=D_{
m t}rac{\partial\psi_i}{\partial x_j},\quad {
m mit}\quad D_{
m t}=rac{
u_{
m t}}{Sc_{
m t}}$$

 \rightarrow Averaged transport equation

not closed



Simplest possible approach:
Express unclosed terms as a function of mean values

• Assumption: heat release expressed by

$$\omega_{T} = \rho S_{T}(T) = \rho B(T_{b} - T) \exp\left(-\frac{E}{\mathcal{R}T}\right)$$

- B: includes frequency factor und heat of reaction
- $T_{\rm b}$: adiabatic flame temperature
- E: activation energy
- Approach for modeling the chemical source term

• Proven method \rightarrow Decomposition into mean and fluctuation

$$T=\widetilde{T}+T''$$

• Taylor expansion at $T \approx \tilde{T}$ (for T = T + T'', $T'' \ll \tilde{T}$) of terms

$$\widetilde{S}_{T}(T) = B(T_{b} - T) \exp\left(-\frac{E}{\mathcal{R}T}\right)$$

– Pre-exponential term

$$(T_{\rm b}-T)\Big|_{T\approx\widetilde{T}}\approx T_{\rm b}-\widetilde{T}-T''$$

Exponential term

$$-\frac{E}{\mathcal{R}T}\bigg|_{T\approx\widetilde{T}}\approx-\frac{E}{\mathcal{R}}\left[\frac{1}{\widetilde{T}}-\frac{1}{\widetilde{T}^{2}}\left(T-\widetilde{T}\right)\right]\bigg|_{\widetilde{T}+T''}=-\frac{E}{\mathcal{R}\widetilde{T}}+\frac{ET''}{\mathcal{R}\widetilde{T}^{2}}$$

• Leads to

$$\widetilde{S}_{T}(T)\Big|_{T\approx\widetilde{T}}\approx B\Big(T_{b}-\widetilde{T}-T''\Big)\exp\left(-\frac{E}{\mathcal{R}\widetilde{T}}\right)\exp\left(\frac{ET''}{\mathcal{R}\widetilde{T}^{2}}\right)$$

• As a function of Favre-mean at \tilde{T}

$$\widetilde{S}_{T}(\widetilde{T}) = B(T_{b} - \widetilde{T}) \exp\left(-\frac{E}{\mathcal{R}\widetilde{T}}\right)$$

yields

$$\widetilde{S}_{T}(T) = \widetilde{S}_{T}(\widetilde{T}) \left(1 - \frac{T''}{T_{b} - \widetilde{T}} \right) \exp\left(\frac{ET''}{\mathcal{R}\widetilde{T}^{2}}\right)$$

• Typical values in the reaction zone of a flame

$$\frac{E}{\mathcal{R}\widetilde{T}} = \mathcal{O}(10) \quad \text{und} \quad 0,1 \le \left|\frac{T''}{\widetilde{T}}\right| \le 0,3$$

- Error around a factor of 10!
- Moment method for reactive scalars inappropriate due to strong non-linear effect of the chemical source term

 $\frac{\partial \overline{\rho} Y_{\alpha}}{\partial t} + \frac{\partial}{\partial x_{j}} \left(\overline{\rho} \widetilde{u}_{j} \widetilde{Y}_{\alpha} \right) = \overline{\frac{\partial}{\partial x_{j}} \left(\rho D_{\alpha} \frac{\partial Y_{\alpha}}{\partial x_{j}} \right)} - \frac{\partial}{\partial x_{j}} \left(\overline{\rho} \left(\widetilde{u_{j}} \widetilde{Y}_{\alpha} - \widetilde{u}_{j} \widetilde{Y}_{\alpha} \right) \right) + \widetilde{m}_{\alpha}^{\prime\prime} \widetilde{m}_{\alpha}^{\prime\prime}$

• Gradient transport model

$$\left(\widetilde{u_{j}Y_{lpha}}-\widetilde{u}_{j}\widetilde{Y}_{lpha}
ight)=-D_{\mathrm{t}}rac{\partial\widetilde{Y}_{lpha}}{\partial x_{j}}$$

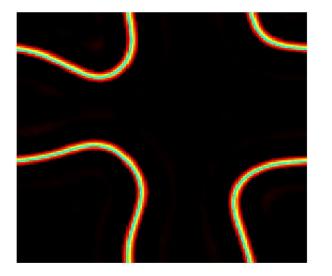
• One step global reaction

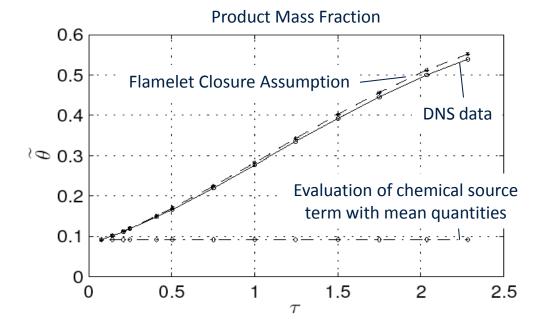
$$\widetilde{\dot{m}_{\alpha}^{\prime\prime\prime}} = M_{\alpha} \frac{\rho^2}{M_{\rm F} M_{\rm O}} Y_{\rm F} Y_{\rm O} A \exp\left(-\frac{E}{\mathcal{R}T}\right)$$

• Decaying isotropic turbulence

$$\frac{\partial \overline{\rho} \widetilde{Y}_{\alpha}}{\partial t} = \widetilde{m}_{\alpha}^{\prime\prime\prime}$$

Example: Non-Premixed Combustion in Isotropic Turbulence





→ Closure by mean values does not work!

Course Overview

Part II: Turbulent Combustion

- Turbulence
- Turbulent Premixed Combustion
- Turbulent Non-Premixed
 Combustion
- Turbulent Combustion Modeling
- Applications

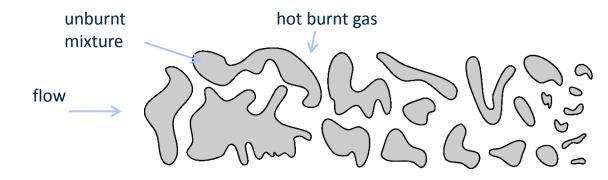
- Moment Methods for reactive scalars
- Simple Models in Fluent: EBU,EDM, FRCM,
 DM/FRCM
 - Introduction in Statistical Methods: PDF, CDF,...
- Transported PDF Model
- Modeling Turbulent Premixed Combustion
 - BML-Model
 - Level Set Approach/G-equation
- Modeling Turbulent Non-Premixed Combustion
 - Conserved Scalar Based Models for Non-Premixed Turbulent Combustion
 - Flamelet-Model
 - Application: RIF, steady flamelet model

- Example: standard models in Fluent
- Very simple models, e.g. based on
 - very fast chemistry
 - no consideration of turbulence

💶 Species Model	
Model Off Species Transport Non-Premixed Combustion Premixed Combustion Partially Premixed Combustion Composition PDF Transport Reactions Volumetric Wall Surface 2	Mixture Properties Mixture Material methane-air Number of Volumetric Species 5 Turbulence-Chemistry Interaction Content Content Content Content Content Content Content Content
OK Apply Cancel Help	

Quelle: Fluent 12 user's guide

First approach for closing the chemical source term was made by Spalding (1971) in premixed combustion



- Assumption: very fast chemistry (after pre-heating)
- Combustion process
 - Breakup of eddies from the unburnt mixture \rightarrow smaller eddies
 - \rightarrow Large surface area (with hot burnt gas)
 - \rightarrow Duration of this breakup determines the pace
- → Eddy-Break-Up-Model (EBU)

• Averaged turbulent reaction rate for the products

$$\overline{\omega}_{\mathsf{P}} = \rho C_{\mathsf{EBU}} \frac{\varepsilon}{k} \left(\overline{Y_{\mathsf{P}}^{\prime\prime 2}} \right)^{1/2}$$

- $-\overline{Y_{\rm P}^{\prime\prime2}}$: variance of mass fraction of the product
- C_{EBU}: Eddy-Break-Up constant
- EBU-modell
 - turbulent mixing sufficiently describes the combustion process
 - chemical reaction rate is negligible
- Problems with EGR, lean/rich combustion
- → Further development by Magnussen & Hjertager (1977): Eddy-Dissipation-Model (EDM)...

2. Eddy-Dissipation-Model

- EDM: typical model for eddy breakup
 - Assumption: very fast chemistry
 - Turbulent mixing time is the dominant time scale

$$\widetilde{S}_i \sim \tau^{-1} = \frac{\widehat{\varepsilon}}{\widetilde{k}}$$

• Chemical source term

$$\widetilde{S}_{i} = A \nu_{i}^{\prime} M_{i} \frac{\widetilde{\varepsilon}}{\widetilde{k}}^{\prime} \min\left(\frac{\widetilde{Y}_{\mathsf{E}}}{\nu_{\mathsf{E}}^{\prime} M_{\mathsf{E}}}, B \frac{\sum \widetilde{Y}_{\mathsf{P}}}{\sum \nu_{\mathsf{P}}^{\prime \prime} M_{\mathsf{P}}}\right)$$

- $Y_{\rm E}, Y_{\rm P}$: mass fraction of reactant/product
- A, B: Model parameter (determined by experiment)

Example: diffusion flame, one step reaction

 $\nu_{\rm F}^{\prime}{\rm F} + \nu_{\rm O}^{\prime}{\rm O}
ightarrow \nu_{\rm P}^{\prime\prime}{\rm P}$

• $Y_{\rm F} > Y_{\rm F,st}$, therefore $Y_{\rm O} < Y_{\rm F} \rightarrow Y_{\rm E} = Y_{\rm O}$

$$\widetilde{S}_{F} = A \,\nu_{F}^{\prime} M_{F} \, \frac{\widetilde{\varepsilon}}{\widetilde{k}} \, \frac{\widetilde{Y}_{O}}{\nu_{O}^{\prime} M_{O}} = A \, \frac{\widetilde{\varepsilon}}{\widetilde{k}} \, \widetilde{Y}_{F,st}$$

• $Y_{\rm F} < Y_{\rm F,st} \rightarrow Y_{\rm E} = Y_{\rm F}$

$$\widetilde{S}_{F} = A \,\nu_{F}^{\prime} M_{F} \,\frac{\widetilde{\varepsilon}}{\widetilde{k}} \,\frac{\widetilde{Y}_{F}}{\nu_{F}^{\prime} M_{F}} = A \,\frac{\widetilde{\varepsilon}}{\widetilde{k}} \,\widetilde{Y}_{F}$$

- Controlled by mixing
- Very fast chemistry
- Application: turbulent premixed and nonpremixed combustion
- Connects turbulent mixing with chemical reaction
 - rich or lean?
 - \rightarrow full or partial conversion
- Advantage: simple and robust model
- Disadvantage
 - No effects of chemical non-equilibrium (formation of NO, local extinction)
 - Areas of finite-rate chemistry:
 - Fuel consumption is overestimated
 - Locally too high temperatures

3. Finite-Rate-Chemistry-Model (FRCM)

- Chemical conversion with finite-rate
- Capable of reverse reactions
- Chemical source term for species *i* in a reaction α

$$\widetilde{S}_{i,\alpha} = \widetilde{\Gamma} M_i (\nu_{i,\alpha}'' - \nu_{i,\alpha}') \left(k_{\mathrm{f},\alpha} \prod_i \left[\frac{\overline{\rho} \widetilde{Y}_i}{M_i} \right]^{\nu_{i,\alpha}'} - k_{\mathrm{b},\alpha} \prod_i \left[\frac{\overline{\rho} \widetilde{Y}_i}{M_i} \right]^{\nu_{i,\alpha}''} \right)$$

- $k_{f,\alpha}$, $k_{b,\alpha}$: reaction rates(determined by Arrhenius kinetic expressions $\rightarrow f(\tilde{T})$)

- $\widetilde{\Gamma}$ models the influence of third bodies

$$\widetilde{\Gamma} = \sum \gamma_{i,\alpha} \frac{\overline{\rho} \widetilde{Y}_i}{M_i}$$

- Linearization of the source term centered on the operating point \rightarrow Integration into equations for species, larger Δt realizable
- Typical approach for detailed computation of homogeneous systems

Summary FRCM

- Chemistry-controlled
- Appropriate for t_{chemistry} > t_{mixng} (laminar/laminar-turbulent)
- Application
 - Laminar-turbulent
 - Non-premixed
- Source term: Arrhenius ansatz
 - Mean values for temperature in Arrhenius expression
 - \rightarrow Effects of turbulent fluctuations are ignored
 - ightarrow Temperature locally too low
- Consideration of non-equilibrium effects

4. Combination EDM/FRCM

itv

- Turbulent flow
 - Areas with high turbulence and intense mixing
 - Laminar structures
- Concept: Combination of EDM and FRCM
 - For each cell: computation of both reaction rates r_i^{EDM} and r_i^{FRCM}
 - The smaller one is picked (determines the reaction rate)

 $r_i = \min(r_i^{\text{EDM}}, r_i^{\text{FRCM}})$

 \rightarrow Chooses locally between chemistry- and mixing-controlled

- Advantage: Meant for large range of applicability
- Disadvantage: no turbulence/chemistry interaction

5. Eddy-Dissipation-Concept (EDC)

- Extension of EDM \rightarrow Considers detailed reaction kinetics
- Assumption: Reactions on small scales ("*": fine scale)

$$\xi^* = C_{\xi} \left(\frac{\nu \widetilde{\varepsilon}}{\widetilde{k}^2}\right)^{1/4}$$
Fluent: $C_{\xi} = 2,1377$

- Volume of small scales: ξ^{*^3}
- Reaction rates are determined by Arrhenius expression (cf. FRCM)
- Time scale of the reactions

$$\tau^* = C_{\tau} \left(\frac{\nu}{\widetilde{\varepsilon}}\right)^{1/2}$$

Fluent: $C_{\tau} = 0,4082$

5. Eddy-Dissipation-Concept (EDC)

itv

- Boundary/initial conditions for reactions (on small scales)
 - Assumption: pressure *p* = const.
 - Initial condition: temperature and species concentration in a cell
 - Reactions on time scale au^*
 - Numerical integration (e.g. ISAT-Algorithm) $\rightarrow \widetilde{Y_i^*}$
- Model for source term

$$\widetilde{S}_i = rac{{\xi^*}^2}{{ au^*}[1-{\xi^*}^3]} (\widetilde{Y_i^*}-\widetilde{Y}_i)$$

- Problem:
 - Requires a lot of processing power
 - Stiff differential equation

Mass fraction on small scales of species *i* after reaction time τ^*



Solely calculation by Arrhenius equation \rightarrow turbulence is not considered

Calculation of Arrhenius reaction rate and *¬* mixing rate; selection of the smaller one → local choice: laminar/turbulent

→ Solely calculation of mixing rate
→ Chemical kinetic is not considered

Modeling of turbulence/chemistry interaction; detailed chemistry

Course Overview

Part II: Turbulent Combustion

- Turbulence
- Turbulent Premixed Combustion
- Turbulent Non-Premixed
 Combustion
- Turbulent Combustion Modeling
- Applications

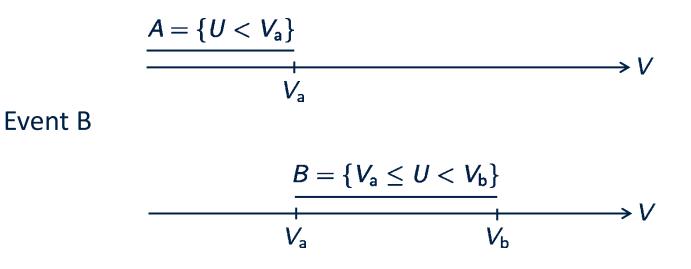
- Moment Methods for reactive scalars
- Simple Models in Fluent: EBU,EDM, FRCM, EDM/FRCM
- Introduction in Statistical Methods: PDF,
 CDF,...
- Transported PDF Model
- Modeling Turbulent Premixed Combustion
 - BML-Model
 - Level Set Approach/G-equation
- Modeling Turbulent Non-Premixed Combustion
 - Conserved Scalar Based Models for Non-Premixed Turbulent Combustion
 - Flamelet-Model
 - Application: RIF, steady flamelet model

- Introduction to statistical methods
 - Sample space
 - Probability
 - Cumulative distribution function(CDF)
 - Probability density function(PDF)
 - Examples for CDFs/PDFs
 - Moments of a PDF
 - Joint statistics
 - Conditional statistics

Pope, "Turbulent Flows"

Sample Space

- Probability of events in sample space
- Sample space: set of all possible events
 - Random variable U
 - Sample space variable V (independent variable)
- Event A

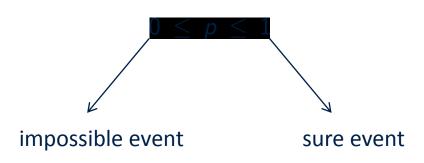


Probability

• Probability of the event $A = \{U < V_a\}$

 $p = P(A) = P\{U < V_a\}$

• Probability p



Cumulative Distribution Function (CDF)

 Probability of any event can be determined from cumulative distribution function (CDF)

 $F(V) = P\{U < V\}$

• Event A

 $P(A) = P\{U < V_a\} = F(V_a)$

it/

• Event B

$$B = \{V_{a} \leq U < V_{b}\}$$

$$V_{a} \qquad V_{b}$$

$$P(B) = P\{V_{a} \le U < V_{b}\} \\ = P\{U < V_{b}\} - P\{U < V_{a}\} \\ = F(V_{b}) - F(V_{a})$$

Cumulative Distribution Function (CDF)

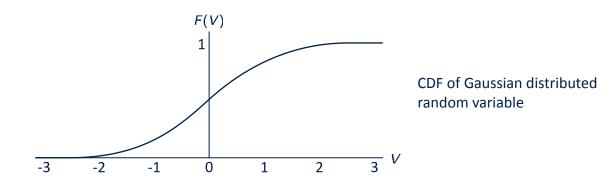
- Three basic properties of a CDF
 - 1. Occuring of event $\{U < -\infty\}$ is impossible $\rightarrow F(-\infty) = 0$
 - 2. Occuring of event $\{U < +\infty\}$ is sure $\rightarrow F(+\infty) = 1$
 - 3. F is a non-decreasing function

$$F(V_{b}) \geq F(V_{a})$$
 für $V_{b} > V_{a}$

as

•

$$F(V_b) - F(V_a) = P\{V_a \leq U < V_b\} \geq 0$$



Probability Density Function (PDF)

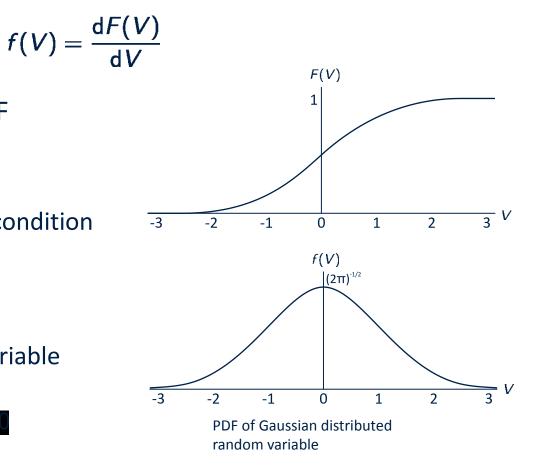
• Derivative of the CDF \rightarrow probability density function

- Three basic properties of a PDF
 - 1. CDF non-decreasing \rightarrow PDF $f(V) \ge 0$
 - 2. Satisfies the normalization condition

 \int_{0}^{∞}

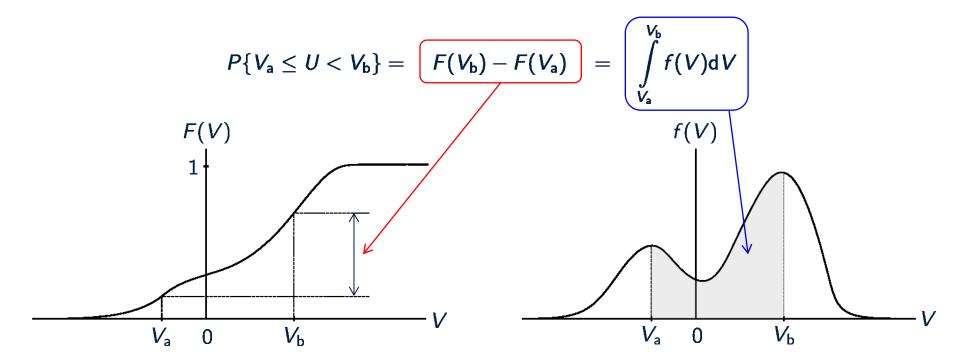
$$\int_{-\infty} f(V) \mathrm{d}V = 1$$

3. For infinite sample space variable



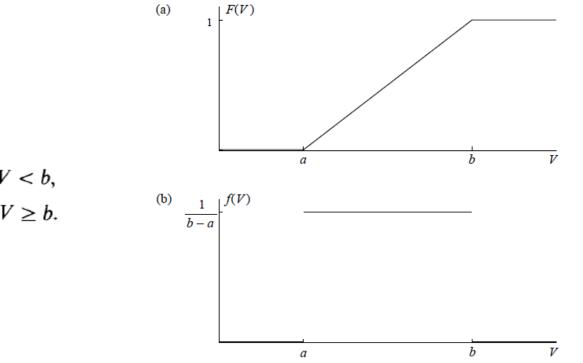
Probability Density Function (PDF)

• Examining the particular interval $V_a \le U < V_b$



• Interval $V_b - V_a \rightarrow 0$: $P\{V \le U < V + dV\} = F(V + dV) - F(V) = f(V)dV$

Uniform distribution



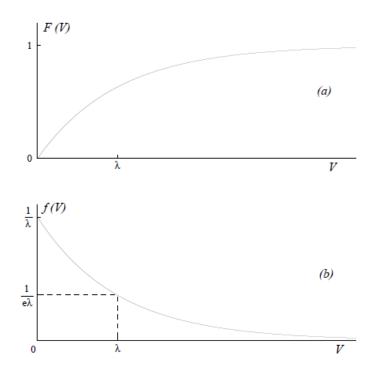
 $_{\rm Figure\,3.5:}$ The CDF (a) and the PDF (b) of a uniform random variable (Eq. (3.39)).

Source: Pope, "Turbulent Flows"

$$f(V) = \begin{cases} \frac{1}{b-a}, & \text{for } a \le V < b, \\ 0, & \text{for } V < a \text{ and } V \ge b. \end{cases}$$

Exponential distribution

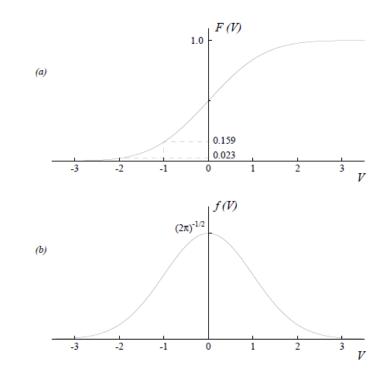
$$f(V) = \begin{cases} \frac{1}{\lambda} \exp(-V/\lambda), & \text{for } V \ge 0, \\ 0, & \text{for } V < 0. \end{cases}$$



 $_{\rm Figure \ 3.6:}$ The CDF (a) and PDF (b) of an exponentially-distributed random variable (Eq. (3.40)).

Source: Pope, "Turbulent Flows"

Normal distribution



 $_{\rm Figure~3.7:}$ The CDF (a) and PDF (b) of a standardized Gaussian random variable.

Source: Pope, "Turbulent Flows"

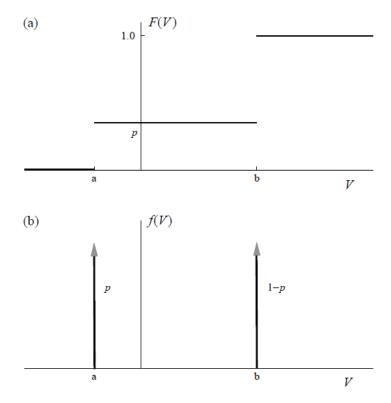
Delta-function distribution

$$F(V) = P\{U < V\} = \begin{cases} 0, & \text{for } V \le a, \\ p, & \text{for } a < V \le b, \\ 1, & \text{for } V > b, \end{cases}$$

or

$$F(V) = pH(V - a) + (1 - p)H(V - b).$$

$$f(V) = p\delta(V-a) + (1-p)\delta(V-b),$$



 $_{\rm Figure \ 3.10:}$ The CDF (a) and the PDF (b) of the discrete random variable U, Eq. (3.69).

Source: Pope, "Turbulent Flows"

• PDF of *U* is known \rightarrow *n*-th moment

$$\overline{U^n} = \int_{-\infty}^{\infty} V^n f(V) \mathrm{d} V$$

• For any function of V, e.g. Q(V)

$$\overline{Q(U)^n} = \int_{-\infty}^{\infty} Q(V)^n f(V) \mathrm{d} V$$

• Example: first moment (*n* = 1): mean of *U*

$$\overline{U} = \int_{-\infty}^{\infty} V f(V) \mathrm{d} V$$

• *n*-th central moment

$$\mu_n = \overline{(U - \overline{U})^n} = \int_{-\infty}^{\infty} (V - \overline{U})^n f(V) \, \mathrm{d}V$$

• Example: second central moment (*n* = 2): variance of *U*

$$\overline{U'^2} = \overline{(U-\overline{U})^2} = \int_{-\infty}^{\infty} (V-\overline{U})^2 f(V) dV$$

• Joint CDF (jCDF) of random variables U_1 , U_2 (in general U_i , i = 1, 2, ...)

 $F_{1,2}(V_1, V_2) = P\{U_1 < V_1, U_2 < V_2\}$

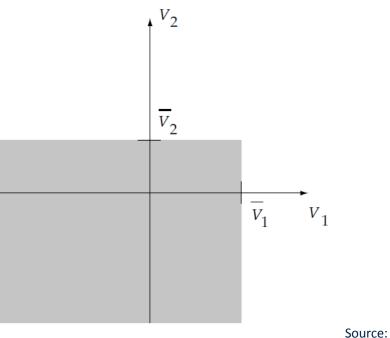


Figure 3.14: The V_1 - V_2 sample space showing the region corresponding to the event $\{U_1 < \overline{V}_1, U_2 < \overline{V}_2\}$.

- Basic properties of a jCDF
 - Non-decreasing function

 $F_{1,2}(V_1+\delta V_1,V_2+\delta V_2)\geq F_{1,2}(V_1,V_2)$ für $\delta V_1,\delta V_2\geq 0$

− Since $\{U_1 < -\infty\}$ is impossible →

$$F_{1,2}(-\infty, V_2) = P\{U_1 < -\infty, U_2 < V_2\} = 0$$

− Since $\{U_1 < +\infty\}$ is certain →

equally

$$F_{1,2}(+\infty, V_2) = P\{U_1 < +\infty, U_2 < V_2\} = P\{U_2 < V_2\} = F_2(V_2)$$

$$f_1(V_1) = F_{1,2}(V_1, \infty)$$

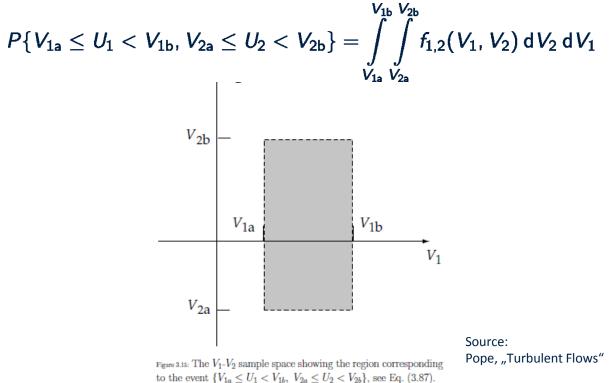
Joint Probability Density Function

itv

• Joint PDF (jPDF)

$$f_{1,2}(V_1, V_2) = \frac{\partial^2 F_{1,2}(V_1, V_2)}{\partial V_1 \partial V_2}$$

• Fundamental property:



– Non-negative:

 $f_{1,2}(V_1, V_2) \geq 0$

Satisfies the normalization condition

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_{1,2}(V_1, V_2) \,\mathrm{d} V_2 \,\mathrm{d} V_1 = 1$$

Marginal PDF

$$f_2(V_2) = \int_{-\infty}^{+\infty} f_{1,2}(V_1, V_2) \,\mathrm{d} V_1$$

Joint Statistics

• For a function $Q(U_1, U_2, ...)$

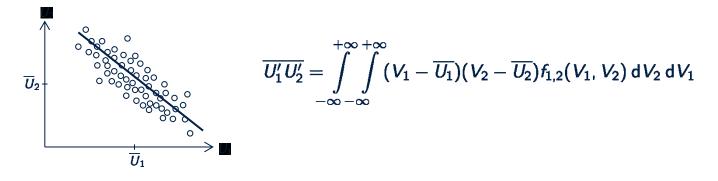
$$\overline{Q(U_1, U_2, \dots)^n} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \dots Q(V_1, V_2, \dots)^n f_{1,2,\dots} (V_1, V_2, \dots) \dots dV_2 dV_1$$

From joint ndf of V all moments can be obtained for all functions of

From joint pdf of V, all moments can be obtained for all functions of V

• Example: $i = 1, 2; n = 1; Q = (U_1 - U_1)(U_2 - U_2)$, covariance of U_1 and U_2

Scatterplot of two velocitycomponents U_1 and U_2



Covariance shows the correlation of two variables

41

Conditional PDF

• PDF of U_2 conditioned on $U_1 = V_1$

$$f_{2|1}(V_2|U_1=V_1)=f_{2|1}(V_2|V_1)=rac{f_{1,2}(V_1,V_2)}{f_1(V_1)}$$

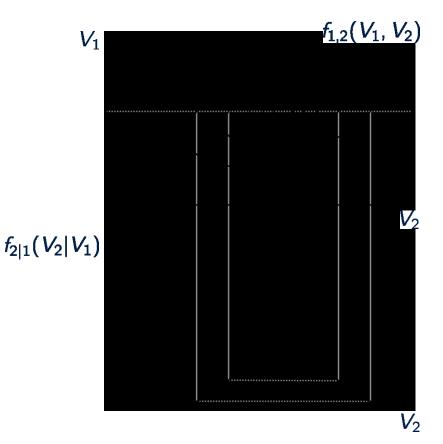
Bayes-Theorem

• jPDF $f_{1,2}(V_1, V_2)$ scaled so that it satisfies the normalization condition

$$\int_{-\infty}^{+\infty} f_{2|1}(V_2|V_1) \,\mathrm{d} V_2 = 1$$

• Conditional mean of a function $Q(U_1, U_2)$

$$\overline{Q(U_1, U_2)|U_1 = V_1} = \int_{-\infty}^{+\infty} Q(V_1, V_2) f_{2|1}(V_2|V_1) \, \mathrm{d} V_2$$



• If U_1 and U_2 are statistically independent, conditioning has no effect

$f_{2|1}(V_2|V_1) = f_2(V_2)$

• Bayes-Theorem

$$f_{2|1}(V_2|V_1) = rac{f_{1,2}(V_1, V_2)}{f_1(V_1)} \quad \Rightarrow \quad f_1(V_1)f_{2|1}(V_2|V_1) = f_{1,2}(V_1, V_2)$$

• Therefore:

$f_{1,2}(V_1, V_2) = f_1(V_1)f_2(V_2)$

- Independent variables \rightarrow uncorrelated
- In general the converse is not true

Course Overview

Part II: Turbulent Combustion

- Turbulence
- Turbulent Premixed Combustion
- Turbulent Non-Premixed
 Combustion
- Turbulent Combustion Modeling
- Applications

- Moment Methods for reactive scalars
- Simple Models in Fluent: EBU,EDM, FRCM, EDM/FRCM
- Introduction in Statistical Methods: PDF, CDF,...
- Transported PDF Model
- Modeling Turbulent Premixed Combustion
 - BML-Model
 - Level Set Approach/G-equation
- Modeling Turbulent Non-Premixed Combustion
 - Conserved Scalar Based Models for Non-Premixed Turbulent Combustion
 - Flamelet-Model
 - Application: RIF, steady flamelet model

44

\rightarrow One-point/multi-variable joint statistics

• A transport equation for joint probability density function $P(\mathbf{v}, \boldsymbol{\psi}; \mathbf{x}, t)$ of velocity \mathbf{v} and all reactive scalars $\boldsymbol{\psi}$ can be derived (cf. O'Brien, 1980; Pope, 1985, 2000)

$$\frac{\partial(\rho P)}{\partial t} + \nabla \cdot (\rho v P) + (\rho g - \nabla \bar{p}) \cdot \nabla_v P + \sum_{i=1}^n \frac{\partial}{\partial \psi_i} [\omega_i P] =$$

$$\nabla_{v} \cdot \left[\langle -\nabla \cdot \boldsymbol{\tau} + \nabla p' | \boldsymbol{v}, \boldsymbol{\psi} \rangle P \right] - \sum_{i=1}^{n} \frac{\partial}{\partial \psi_{i}} \left[\langle \nabla \cdot (\rho D \nabla \psi_{i}) | \boldsymbol{v}, \boldsymbol{\psi} \rangle P \right]$$

where ∇_v is gradient with respect to velocity components, angular brackets are conditional means, and the same symbol is used for random and sample space variables

PDF Transport Equation: Formulation

• One-point/one-time joint velocity/scalar PDF transport equation

$$\frac{\partial(\rho P)}{\partial t} + \nabla \cdot (\rho v P) + (\rho g - \nabla \bar{p}) \cdot \nabla_v P + \sum_{i=1}^n \frac{\partial}{\partial \psi_i} [\omega_i P] =$$

$$\nabla_{v} \cdot [\langle -\nabla \cdot \tau + \nabla p' | v, \psi \rangle P] - \sum_{i=1}^{n} \frac{\partial}{\partial \psi_{i}} [\langle \nabla \cdot (\rho D \nabla \psi_{i}) | v, \psi \rangle P]$$

- First two terms on the l.h.s. are local change and convection in physical space
- Third term represents transport in velocity space by gravity and mean pressure
- Last term on l.h.s. contains chemical source terms
- All these terms are in closed form, since they are local in physical space
 - Pressure gradient does not present a closure problem, since pressure is calculated independently of pdf equation using mean velocity field
 - For chemically reacting flows, it is of particular interest that the chemical source terms can
 be treated exactly

PDF Transport Equation: Closure Problem

• One-point/one-time joint velocity/scalar PDF transport equation

$$\frac{\partial(\rho P)}{\partial t} + \nabla \cdot (\rho v P) + (\rho g - \nabla \bar{p}) \cdot \nabla_v P + \sum_{i=1}^n \frac{\partial}{\partial \psi_i} [\omega_i P] =$$

$$\nabla_{v} \cdot \left[\langle -\nabla \cdot \tau + \nabla p' | v, \psi \rangle P \right] - \sum_{i=1}^{n} \frac{\partial}{\partial \psi_{i}} \left[\langle \nabla \cdot (\rho D \nabla \psi_{i}) | v, \psi \rangle P \right]$$

- First unclosed term on r.h.s. describes transport of PDF in velocity space induced by viscous stresses and fluctuating pressure gradient
- Second term represents transport in reactive scalar space by molecular fluxes

This term represents molecular mixing and is unclosed

PDF Transport Equation: Fast chemistry

- itv
- For fast chemistry, mixing and reaction take place in thin layers where molecular transport and the chemical source term balance each other
 - Hence, closed chemical source term and unclosed molecular mixing term are closely linked to each other
 - Pope and Anand (1984) have illustrated this for the case of premixed turbulent combustion by comparing a standard pdf closure for the molecular mixing term with a formulation, where the molecular diffusion term was combined with the chemical source term to define a modified reaction rate
 - They call the former distributed combustion and the latter flamelet combustion and find considerable differences in the Damköhler number dependence of the turbulent burning velocity normalized with the turbulent intensity

PDF Transport Equation: Application

- PDF transport equation is scalar equation in many dimensions
 - Mesh-based techniques not attractive for high-dimensional equations

→ Monte-Carlo simulation techniques (cf. Pope, 1981, 1985)

- Monte-Carlo methods represent PDF by large number of so-called notional particles
 - Particles should be considered different realizations of turbulent reactive flow
 - Statistical error decreases with $N^{1/2}$
 - \rightarrow Slow convergence
- Application mostly only for joint scalar PDF coupled with Eulerian RANS flow solver
 - Coupling between Lagrangian and Eulerian solver important
- Applications often in steady RANS
 - \rightarrow Large particle number achieved by time averaging

PDF Transport Equation: Application in LES

• Density weighted joined scalar filtered density function F_L (FDF) defined using filter kernel G

$$F_{\rm L}(\boldsymbol{\psi}; \mathbf{x}, t) = \int_{-\infty}^{+\infty} \rho(\mathbf{y}, t) \xi[\boldsymbol{\psi}, \boldsymbol{\phi}(\mathbf{y}, t)] G(\mathbf{y} - \mathbf{x}) \, \mathrm{d}\mathbf{y}$$

- Note: FDF does not have the statistical properties as a PDF
- Challenges:
 - LES is unsteady
 - \rightarrow Large number of notional particles required in each cell at each point in time
 - Keep number of particles per cell uniform
 - Two-way conservative interpolation between particles and mesh
 - Large number of cells makes chemistry integration even more expensive
 - $\rightarrow\,$ In situ adaptive tabulation
 - Eulerian/Lagrangian coupling needs to be achieved at all times

Application TPDF Model in LES of Turbulent Jet Flames

- LES/FDF of Sandia flames D and E (Raman & Pitsch, 2007)
 - Joint scalar pdf

51

- Eulerian/Lagrangian coupling
 - \rightarrow Density computed through filtered enthalpy equation for improve numerical stability
- Detailed chemical mechanism (19 species)
- 30-50 particles per cell
- Simple mixing model (Interaction by exchange with the mean, IEM)

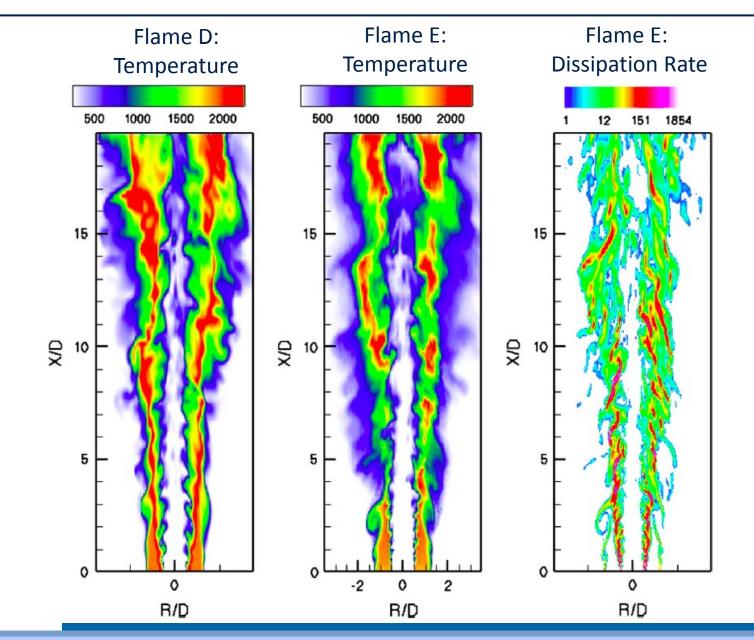
$$\mathrm{d}\boldsymbol{\psi} = -\frac{1}{\tau_{\phi}} \left(\boldsymbol{\psi} - \widetilde{\boldsymbol{\phi}}\right) \mathrm{d}t + \mathbf{S}(\boldsymbol{\psi}) \,\mathrm{d}t$$

- Mixing time needs to be modeled \rightarrow Usually $\tau_{\phi} = t_t / C_{\phi}$ where $C_{\phi} = \text{const}$
- Here, new dynamic model for C_{ϕ}
- Modeled stochastic differential equation for particle-position

$$d\mathbf{x}^* = \left[\widetilde{\mathbf{u}} + \frac{1}{\overline{\rho}}\nabla\overline{\rho}(D + D_{\mathrm{T}})\right]dt + \sqrt{2(D + D_{\mathrm{T}})}\,\mathrm{d}\mathbf{W},$$

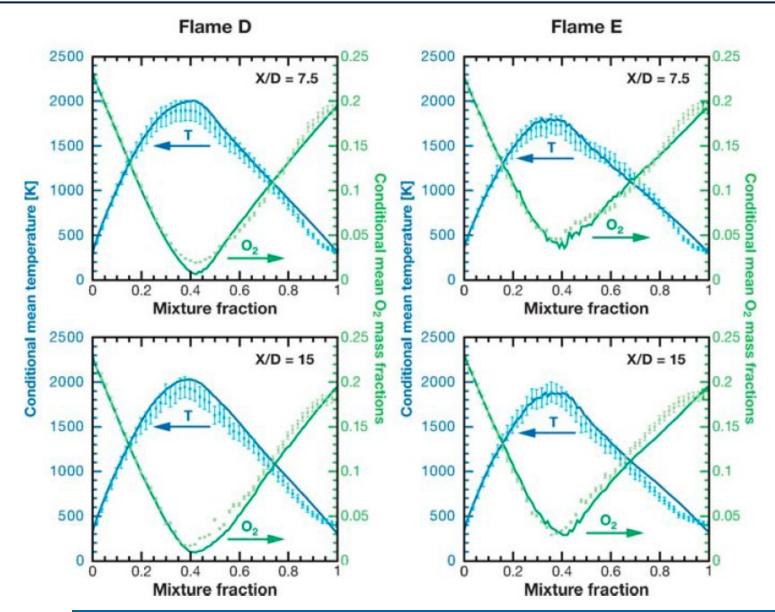
¹ V. Raman and H. Pitsch, A consistent LES/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry, Proc. Comb. Inst., 31, pp. 1711–1719, 2007.

Application TPDF Model in LES of Turbulent Jet Flames



52

Application TPDF Model in LES of Turbulent Jet Flames



Course Overview

Part II: Turbulent Combustion

- Turbulence
- Turbulent Premixed Combustion
- Turbulent Non-Premixed
 Combustion
- Turbulent Combustion Modeling
- Applications

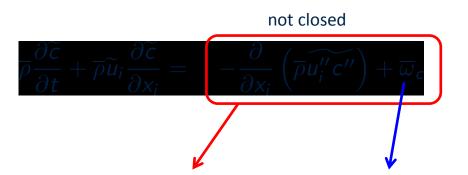
- Moment Methods for reactive scalars
- Simple Models in Fluent: EBU,EDM, FRCM, EDM/FRCM
- Introduction in Statistical Methods: PDF, CDF,...
- Transported PDF Model
- Modeling Turbulent Premixed Combustion
 - BML-Model
 - Level Set Approach/G-equation
- Modeling Turbulent Non-Premixed Combustion
 - Conserved Scalar Based Models for Non-Premixed Turbulent Combustion
 - Flamelet-Model
 - Application: RIF, steady flamelet model

Bray-Moss-Libby-Model

- Flamelet concept for premixed turbulent combustion: Bray-Moss-Libby-Model (BML)
- Premixed combustion: progress variable *c*, e.g.

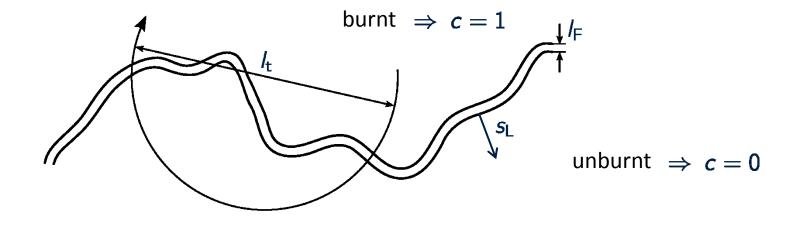
$$c = rac{T - T_u}{T_b - T_u}$$
 or $c = rac{Y_P}{Y_{P,b}}$

• Favre averaged transport equation (neglecting the molecular transport)



• Closure for turbulent transport and chemical source term by BML-Model

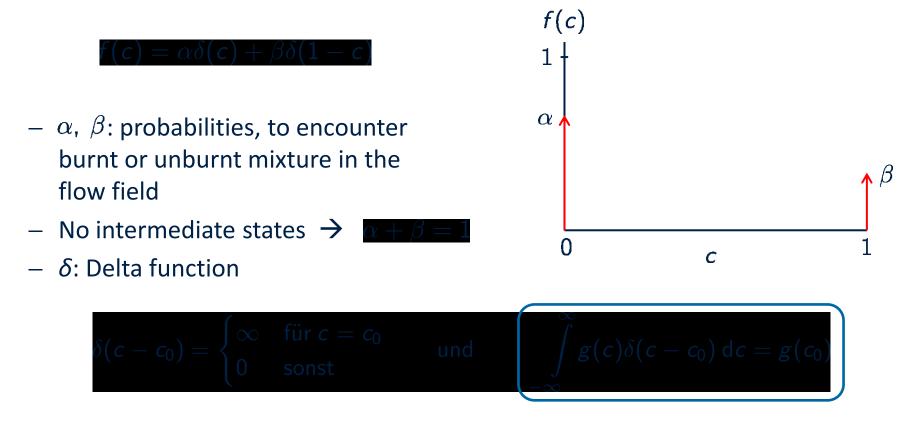
• Assumption: very fast chemistry, flame size $I_{\rm F} \ll \eta \ll I_{\rm t}$



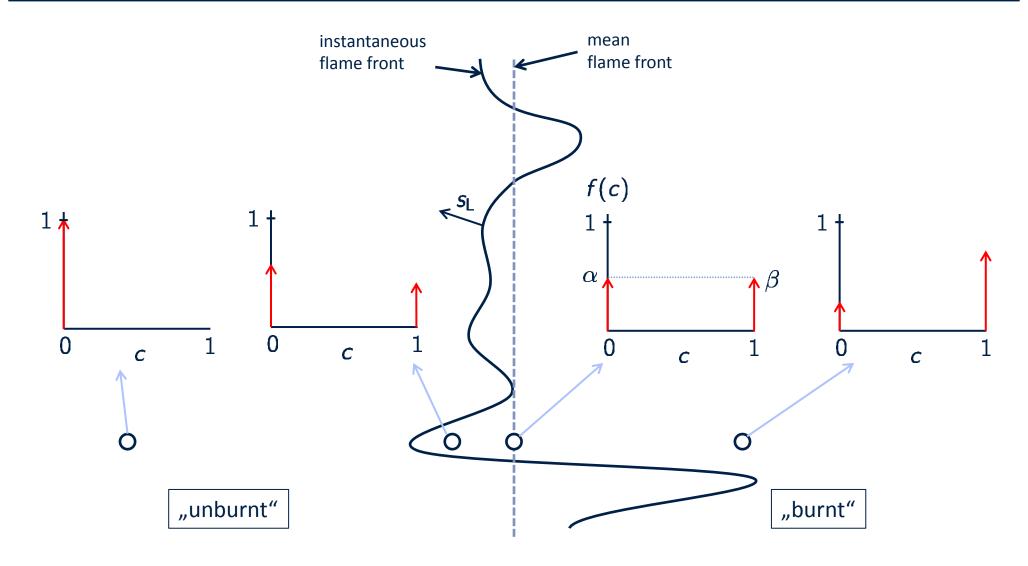
- Fuel conversion only in the area of thin flame front
 - \rightarrow in the flow field
 - Burnt mixture or
 - Unburnt mixture,
 - Intermediate states are very unlikely

Bray-Moss-Libby-Model

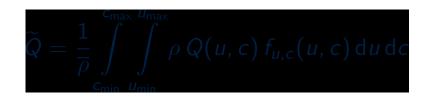
- Assumption: progress variable is expected solely to be
 c = 0 (unburnt) or c = 1 (burnt)
- Probability densitiy function



Bray-Moss-Libby-Model



• For a Favre average



- Therefore the unclosed correlation $\widetilde{u''c''}$
 - joint PDF for u and c

 $f_{u,c}(u,c) = f(c)f_{u|c}(u|c)$

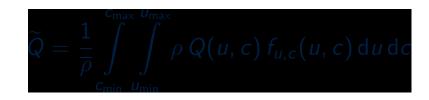
(Bayes-Theorem)

- Introducing the BML approach for f(c) leads to

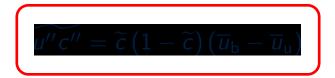
$$f_{u,c}(u,c) = \alpha \delta(c) \underbrace{f_{u|c}(u|c=0)}_{l=0} + \beta \underbrace{\delta(1-c)}_{l=0} f_{u|c}(u|c=1)$$

conditional PDF delta function

• With

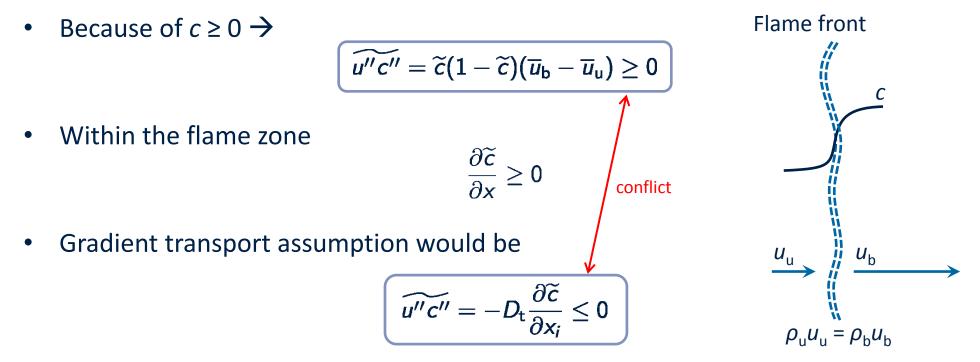


follows



• Because of ρu = const. \rightarrow through flame front: $u \uparrow$ just as much as $\rho \downarrow \rightarrow$

$$(\overline{u}_{b} - \overline{u}_{u}) > 0$$

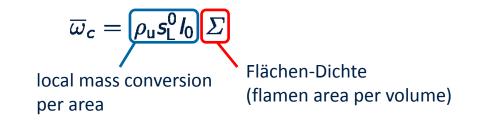


• Conflict: "countergradient diffusion"

BML-closure of Chemical Source Term

itv

- Closure by BML-model f(c) leads to $\overline{\omega}_c = 0$
- Closure of the chemical source term, e.g. by flame-surface-density-model



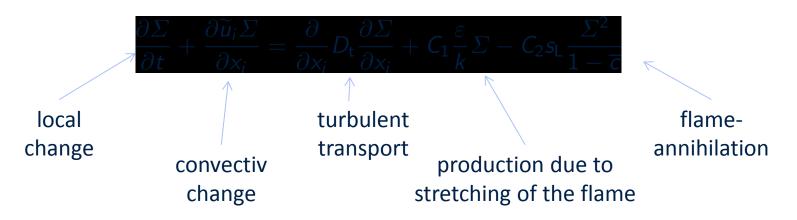
- $-I_0$: strain factor \rightarrow local increase of burning velocity by strain
- Flame-surface-density Σ
 - e.g. algebraic model:

$$\Sigma \sim \frac{\overline{c} (1 - \overline{c})}{L_{y_{row}}}$$

- Or transport equation for Σ

Flame crossing length

• Transport equation for Σ



- No chemical time scale
 - Turbulent time ($\tau = k/\varepsilon$) is the determining time scale
 - Limit of infinitely fast chemistry
 - By using transport equations
 - \rightarrow model for chemical source term independent of $s_{\rm L}$

Course Overview

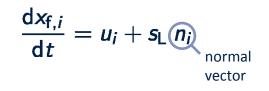
Part II: Turbulent Combustion

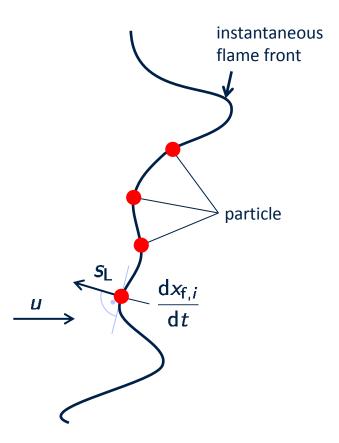
- Turbulence
- Turbulent Premixed Combustion
- Turbulent Non-Premixed
 Combustion
- Turbulent Combustion Modeling
- Applications

- Moment Methods for reactive scalars
- Simple Models in Fluent: EBU,EDM, FRCM, EDM/FRCM
- Introduction in Statistical Methods: PDF, CDF,...
- Transported PDF Model
- Modeling Turbulent Premixed Combustion
 - BML-Model
 - Level Set Approach/G-equation
- Modeling Turbulent Non-Premixed Combustion
 - Conserved Scalar Based Models for Non-Premixed Turbulent Combustion
 - Flamelet-Model
 - Application: RIF, steady flamelet model

Level-Set-Approach

- Kinematics of the flame front by examining the movement of single flame front-"particles"
- Movement influenced by
 - Local flow velocity u_i , i = 1,2,3
 - Burning velocity s_{L}





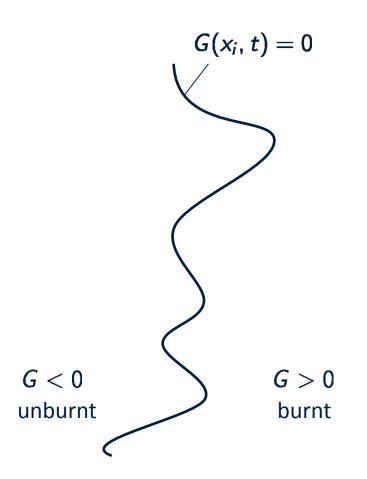
G-Equation

- Instead of observing a lot of particles → examination of a scalar field G
- Iso-surface G₀ is defined as the flame front

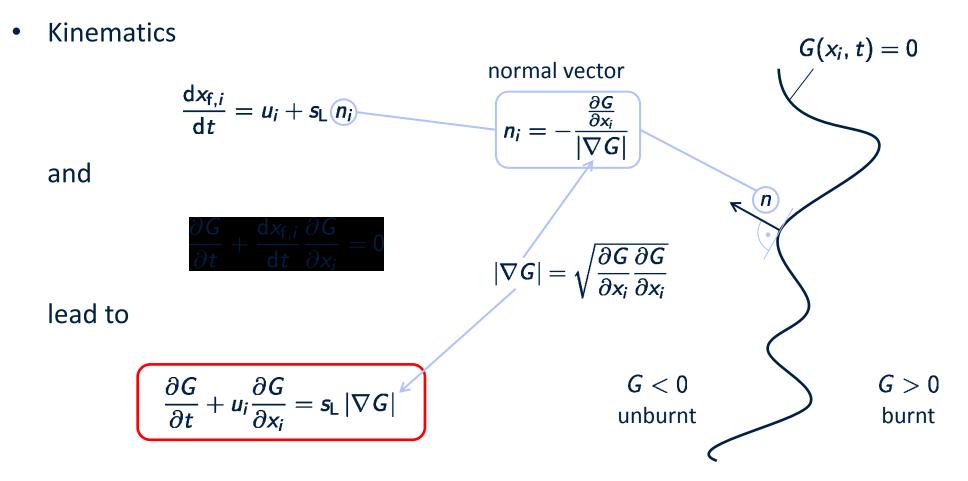
 $G(x_i,t)=G_0=0$

• Substantial derivative of G (on the flame front)

$$\frac{\mathrm{D}G}{\mathrm{D}t} \equiv \frac{\partial G}{\partial t} + \frac{\mathrm{d}x_{\mathrm{f},i}}{\mathrm{d}t}\frac{\partial G}{\partial x_i} = 0$$

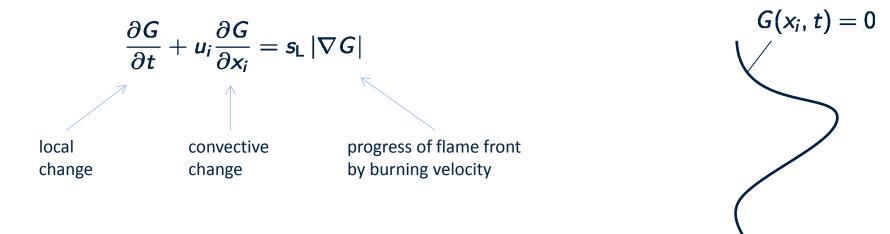


G-Equation for Premixed Combustion

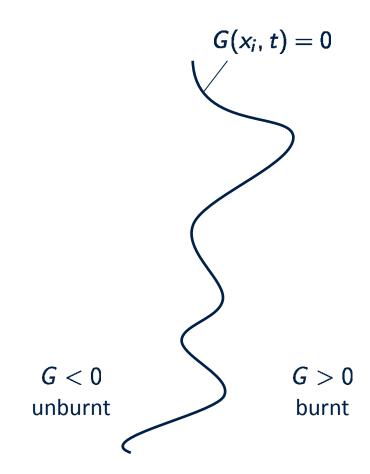


 \rightarrow G-Equation for premixed combustion

G-Equation in the Regime of Corrugated Flamelets



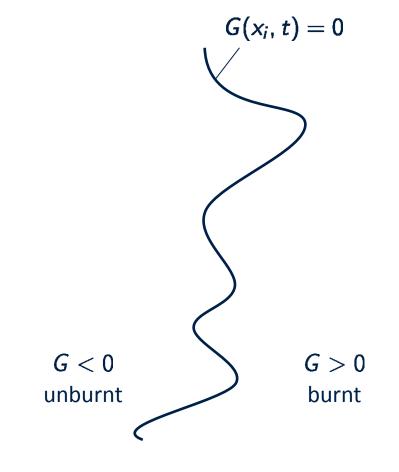
- No diffusive term
- Can be applied for
 - Thin flames
 - Well-defined burning velocity
- \rightarrow Regime of corrugated flamelets ($\eta \gg I_{\rm F} \gg I_{\delta}$)



G-Equation in the Regime of Corrugated Flamelets

$$\frac{\partial G}{\partial t} + u_i \frac{\partial G}{\partial x_i} = s_{\mathsf{L}} |\nabla G|$$

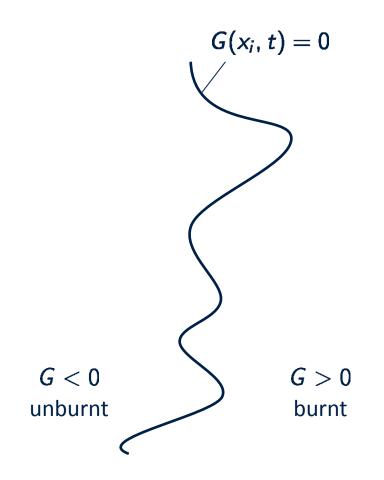
- Kinematic equation $\rightarrow \neq f(\rho)$
- Valid for flame position: $G = G_0$ (= 0)
 - For solving the field equation, G needs to be defined in the entire field
 - Different possibilities to define G, e.g. signed distance function



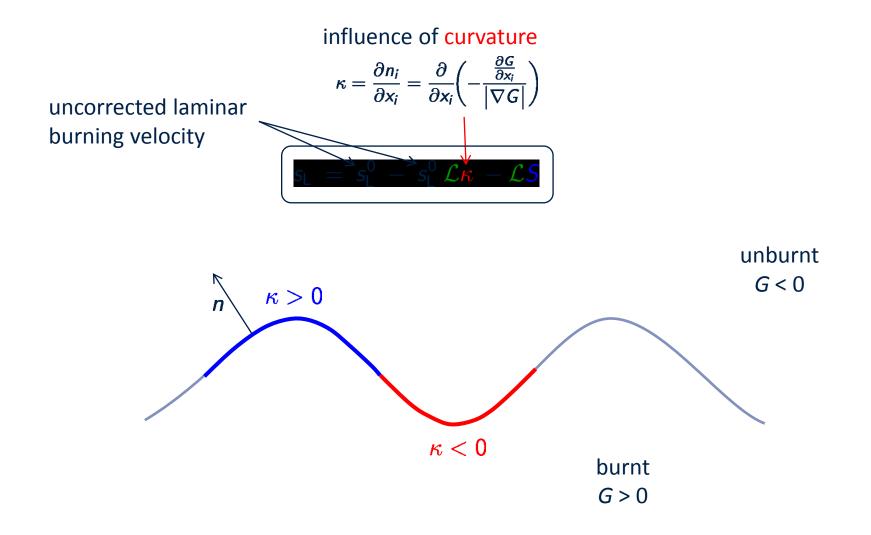
G-Equation in the Regime of Corrugated Flamelets

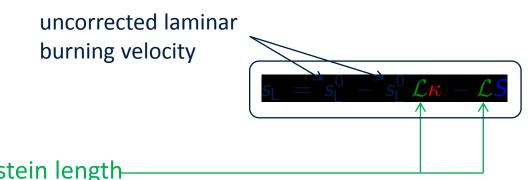
$$\frac{\partial G}{\partial t} + u_i \frac{\partial G}{\partial x_i} = s_{\mathsf{L}} |\nabla G|$$

- Influence of chemistry by s_{L}
- s_L not necessarily constant, influenced by
 - strain S
 - curvature к
 - Lewis number effect
- Modified laminar burning velocity



Laminar Burning Velocity: Curvature

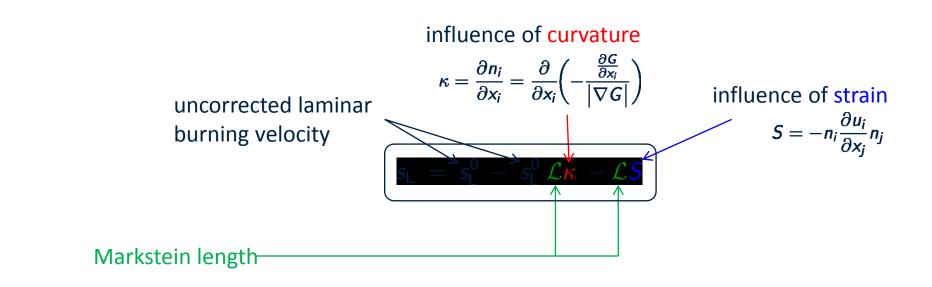




- Markstein length-
 - Determined by experiment
 - Or by asymptotic analysis

$$\frac{\mathcal{L}_{u}}{l_{\mathsf{F}}} = \frac{1}{\gamma} \ln\left(\frac{1}{1-\gamma}\right) + \frac{Ze\left(Le-1\right)}{2} \frac{(1-\gamma)}{\gamma} \int_{0}^{\gamma/(1-\gamma)} \frac{\ln\left(1+x_{i}\right)}{x_{i}} dx_{i}$$
density
ratio
$$Ze = \frac{E}{RT_{b}} \frac{T_{b}-T_{u}}{T_{b}} \quad Le = \frac{\lambda}{\rho c_{p} D} = \frac{Sc}{Pr}$$

itı



 \rightarrow Extended G-Equation

$$\frac{\partial G}{\partial t} + u_i \frac{\partial G}{\partial x_i} = \left(s_{\mathsf{L}}^0 - s_{\mathsf{L}}^0 \mathcal{L}\kappa - \mathcal{L}S\right) |\nabla G|$$

G-Equation: Corrugated Flamelets/Thin Reaction Zones

- Previous examinations limited to the regime of corrugated flamelets
 - Thin flame structures ($\eta >> I_F >> I_{\delta}$)
 - Laminar burning velocity well-defined

- Regime of thin reaction zones
 - Small scale eddies penetrate the preheating zone
 - Transient flow
 - Burning velocity not well-defined

→ Problem: Level-Set-Approach valid in the regime of thin reaction zones?

no longer valid

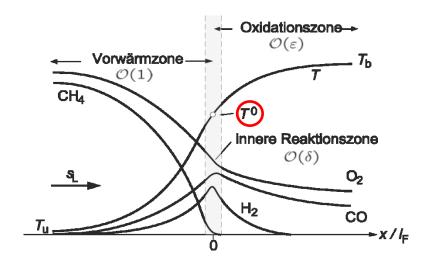
G-Equation: Regime of Thin Reaction Zones

- Assumption: "G=0" surface is represented by inner reaction zone
- Inner reaction zone
 - Thin compared to small scale eddies, $I_{\delta} \ll \eta$
 - Described by $T(x_i, t) = T^0$
- Temperature equation

$$\rho \frac{\partial T}{\partial t} + \rho u_i \frac{\partial T}{\partial x_i} = \frac{\partial}{\partial x_i} \left(\rho D \frac{\partial T}{\partial x_i} \right) + \omega_T$$

• Iso temperature surface $T(x_i, t) = T^0$

$$\frac{\mathsf{D}T}{\mathsf{D}t}\Big|_{T=T^0} \equiv \frac{\partial T}{\partial t} + \frac{\partial T}{\partial x_i} \frac{\mathsf{d}x_{\mathsf{f},i}}{\mathsf{d}t}\Big|_{T=T^0} = 0 \qquad \qquad \left(\mathsf{cf.} \quad \frac{\partial G}{\partial t} + \frac{\partial G}{\partial x_i} \frac{\mathsf{d}x_{\mathsf{f},i}}{\mathsf{d}t} = 0\right)$$



• Equation of motion of the iso temperature surface $T(x_i, t) = T^0$

$$\frac{\mathrm{d}x_{\mathrm{f},i}}{\mathrm{d}t}\Big|_{T=T^0} = u_{i,0} + n_i s_{\mathrm{d}} \left(\mathrm{cf.} \quad \frac{\mathrm{d}x_{\mathrm{f},i}}{\mathrm{d}t} = u_i + s_{\mathrm{L}} n_i \right)$$

- With the displacement speed s_{d}

$$s_{d} = \left[\frac{\frac{\partial}{\partial x_{i}}\rho D\frac{\partial T}{\partial x_{i}} + \omega_{T}}{\rho |\nabla T|}\right]_{T=T_{0}}$$

Normal vector

$$n_{i} = -\frac{\frac{\partial T}{\partial x_{i}}}{\left|\nabla T\right|}\Big|_{T=T^{0}} \qquad \left(\text{cf.} \quad n_{i} = -\frac{\frac{\partial G}{\partial x_{i}}}{\left|\nabla G\right|}\right)$$

G-Equation: Regime of Thin Reaction Zones

With
$$G_0 = T^0$$

$$\frac{\partial G}{\partial t} + u_i \frac{\partial G}{\partial x_i} = \underbrace{\left[\frac{\frac{\partial}{\partial x_i} \rho D \frac{\partial T}{\partial x_i} + \omega_T}{\rho |\nabla T|}\right]_0}_{\mathbf{s}_d} |\nabla G|$$

Diffusion term \rightarrow normal diffusion (~ s_n) and curvature term (~ κ)

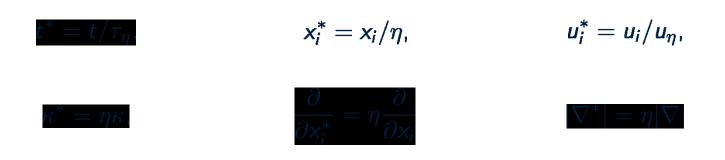
$$\frac{\partial}{\partial x_i} \left(\rho D \frac{\partial T}{\partial x_i} \right) = \underbrace{n_j \frac{\partial}{\partial x_j} \left(\rho D n_i \frac{\partial T}{\partial x_i} \right)}_{\sim s_n} - \rho D \left| \nabla T \right| \underbrace{\frac{\partial n_i}{\partial x_i}}_{\kappa}$$

 \rightarrow *G*-equation for the regime of thin reaction zones

$$\frac{\partial G}{\partial t} + u_i \frac{\partial G}{\partial x_i} = \left(\underbrace{s_n + s_r}_{=s_{L,s}} - D\kappa\right) |\nabla G| \quad \Leftrightarrow \quad \left[\frac{\partial G}{\partial t} + u_i \frac{\partial G}{\partial x_i} = s_{L,s} |\nabla G| - D\kappa |\nabla G|\right]$$

Common Level Set Equation for Both Regimes

• Normalize G-equation with Kolmogorov scales $(\eta, \tau_{\eta}, u_{\eta})$



leads to

- Non dimensional \rightarrow
 - \rightarrow Derivatives, u_i^* , $\kappa^* \approx O(1)$
- Typical flame $\Rightarrow Sc = v/D \approx 1 \Rightarrow D/v = O(1)$
- Parameter: s_{L}/u_{η} $- Ka = u_{\eta}^{2}/s_{L}^{2} \rightarrow s_{L}/u_{\eta} = Ka^{-1/2}$ $- s_{L,s} \approx s_{L}$

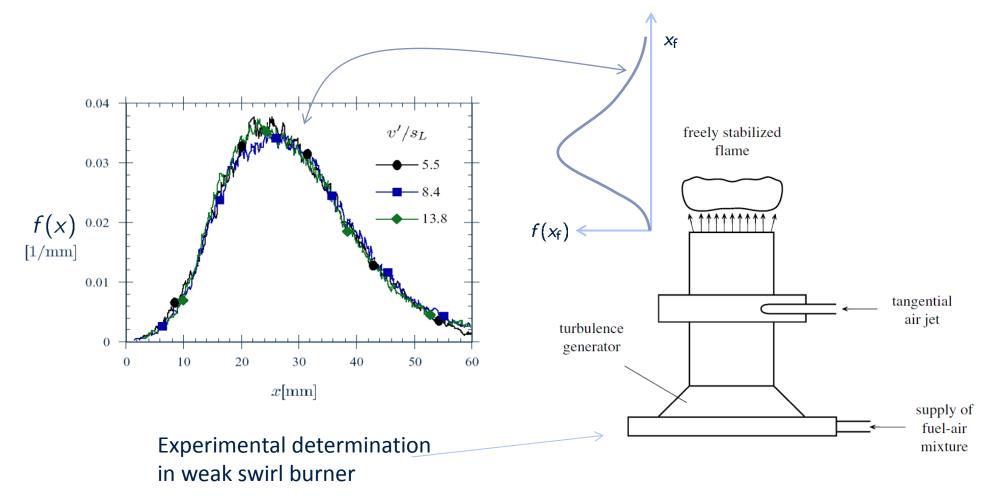


- Thin reaction zones: Ka >> 1
 → curvature term is dominant
- Corrugated flamelets: Ka << 1
 → s₁ term is dominant
- Leading order equation in both regimes

$$\rho \frac{\partial G}{\partial t} + \rho u_i \frac{\partial G}{\partial x_i} = (\rho s_L^0) |\nabla G| - (\rho D) \kappa |\nabla G|$$
Assumption: $\rho_u u_u = (\rho_u s_L^0) = \text{const.}$ const.

Statistical Description of Turbulent Flame Front

• Probability density function of finding $G(x_i, t) = G_0 = 0$



itv

• Consider steady one-dimensional premixed turbulent mean flame at position $x_{\rm f}$

$$x_{\rm f} = \int_{-\infty}^{\infty} x f(x) \, \mathrm{d}x$$

• Define flame brush thickness I_f from f(x)

$$J_{\rm f}^2 = \overline{(x - \overline{x}_f)^2} = \int_{-\infty}^{\infty} (x - x_{\rm f})^2 f(x) dx$$

• If *G* is distance function then

$$G' = -(x - x_f)$$

Equation for Favre-mean

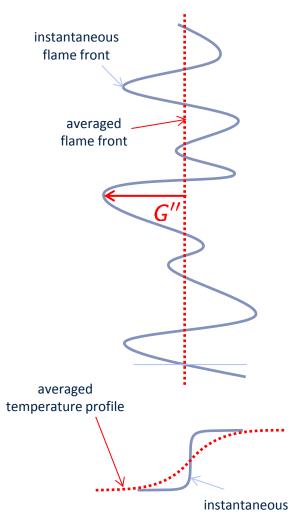
$$\overline{\rho}\frac{\partial\widetilde{G}}{\partial t} + \overline{\rho}\widetilde{u_i}\frac{\partial\widetilde{G}}{\partial x_i} + \frac{\partial}{\partial x_i}\overline{\rho}\widetilde{u''G''} = (\rho s_{\mathsf{L}}^0)\overline{\sigma} - (\rho D)\overline{\kappa}\overline{\sigma}$$

• Equation for variance

۲

$$\overline{\rho}\frac{\partial\widetilde{G''^{2}}}{\partial t} + \overline{\rho}\widetilde{u_{i}}\frac{\partial\widetilde{G''^{2}}}{\partial x_{i}} + \frac{\partial}{\partial x_{i}}\overline{\rho}\widetilde{u_{i}''G''^{2}} = -2\overline{\rho}\widetilde{u_{i}''G''}\frac{\partial\widetilde{G}}{\partial x_{i}} - \overline{\rho}\widetilde{\omega} - \overline{\rho}\widetilde{\chi} - (\rho D)\overline{\mathcal{K}\sigma}$$

- $\sigma = |\nabla G|$ can be interpreted as the area ratio of the flame A_T/A
- Variance describes the average size of the flame

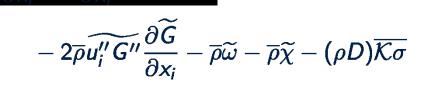


instantaneous temperature profile

itv

Modeling of the Variance Equation

• Sink terms in the variance equation



Kinematic restoration

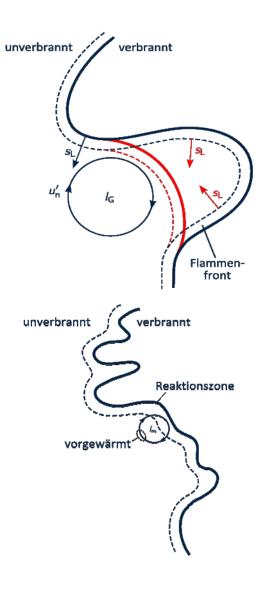
$$\widetilde{\omega}=-2(
ho s^{0}_{\mathsf{L}})\overline{{{\it G}}''\sigma}/\overline{
ho}$$

- Scalar dissipation

 $\widetilde{\chi} = 2(\rho D) \left(\frac{\widetilde{\partial G''}}{\partial x_i}\right)^2 / \overline{\rho}$

are modeled by

$$\widetilde{\omega} + \widetilde{\chi} = c_{\mathsf{s}} \frac{\widetilde{arepsilon}}{\widetilde{m{k}}} \widetilde{G''^2}$$



• Introducing turbulent burning velocity

$$(\overline{\rho}s_{\mathsf{T}}^{0})\left|\nabla\widetilde{G}\right| = (\rho s_{\mathsf{L}}^{0})\overline{\sigma} \quad (\mathsf{vgl.}\ s_{\mathsf{T}}A = s_{\mathsf{L}}A_{\mathsf{T}})$$

 \rightarrow Equation for Favre mean

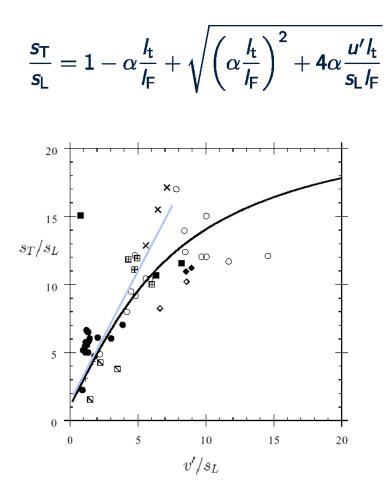
$$\overline{\rho}\frac{\partial\widetilde{G}}{\partial t} + \overline{\rho}\widetilde{u}_{i}\frac{\partial\widetilde{G}}{\partial x_{i}} = (\overline{\rho}s_{\mathsf{T}}^{0})\left|\nabla\widetilde{G}\right| - \overline{\rho}D_{\mathsf{t}}\widetilde{\kappa}\left|\nabla\widetilde{G}\right|$$

 \rightarrow Equation for variance

$$\overline{\rho}\frac{\partial\widetilde{G''^2}}{\partial t} + \overline{\rho}\widetilde{u}_i\frac{\partial\widetilde{G''^2}}{\partial x_i} = \nabla_{||}\cdot(\overline{\rho}D_{\mathsf{t}}\nabla_{||}\widetilde{G''^2}) + 2\overline{\rho}D_{\mathsf{t}}\left(\frac{\partial\widetilde{G}}{\partial x_i}\right)^2 - c_{\mathsf{s}}\overline{\rho}\frac{\widetilde{\varepsilon}}{\widetilde{k}}\widetilde{G''^2}$$

G-Equation for Turbulent Flows

• Modeling of turbulent burning velocity by Damköhler theory



• Favre mean of G

• Favre-PDF

$$\widetilde{f}(G; x, t) = \frac{1}{\sqrt{2\pi \widetilde{G''^2}|_0}} \exp\left(-\frac{\left(G - \widetilde{G}\right)^2}{2\widetilde{G''^2}|_0}\right)$$

• Mean temperature (or other scalar)

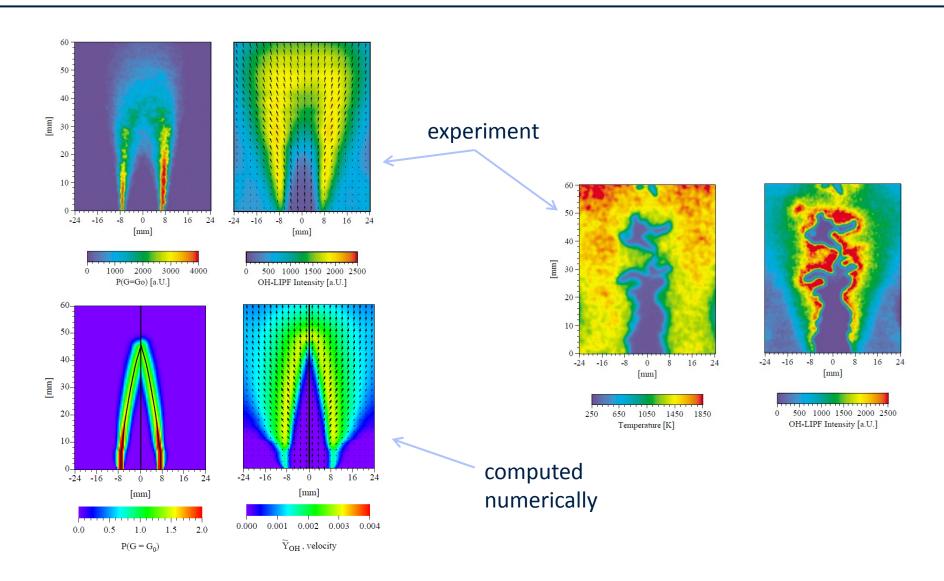
$$\widetilde{T} = \int_{-\infty}^{+\infty} T(G) \widetilde{f}(G) dG$$

$$T(G) = T(x) \text{ taken from laminar premixed flame without strain}$$



87

Example: Presumed Shape PDF Approach (RANS)



itv

G-Equation for LES

- Different averaging procedure¹
- Start from progress variable C defined from temperature or reaction products
- Equation for Heaviside function centered at $C = C_0$

$$\frac{\partial}{\partial t} \left[H \left(C - C_0 \right) \right] + u_j \frac{\partial}{\partial x_j} \left[H \left(C - C_0 \right) \right] = \mathcal{D}_C \kappa \left| \nabla \left[H \left(C - C_0 \right) \right] \right| + \delta (C - C_0) \frac{1}{\rho} \left[n_j \frac{\partial}{\partial x_j} \left(\rho \mathcal{D}_C \left| \nabla C \right| \right) + \rho \dot{\omega}_C \right]$$

• With
$$\mathcal{G}(t, \mathbf{x}) = H(C(t, \mathbf{x}) - C_0)$$

$$\frac{\partial}{\partial t}(\mathcal{G}) + u_j \frac{\partial}{\partial x_j}(\mathcal{G}) = (\mathcal{D}_C \kappa)_{C_0} |\nabla \mathcal{G}| + s_{L,C_0} |\nabla \mathcal{G}|$$

where

$$s_{L,C_0} = \left[\frac{1}{|\nabla C|\rho} \left(n_j \frac{\partial}{\partial x_j} \left(\rho \mathcal{D}_C \left|\nabla C\right|\right) + \rho \dot{\omega}_C\right)\right]_{C=C_0}$$

¹ E. Knudsen and H. Pitsch, A dynamic model for the turbulent burning velocity for large eddy simulation of premixed combustion, Combust. Flame, 154 (4), pp. 740–760, 2008.

G-Equation for LES

• Filtered Heaviside function

$$\overline{\mathcal{G}}(t, \mathbf{x}) = \int_{V} \mathcal{F}(\mathbf{r}) \, \mathcal{G}(t, \mathbf{x} + \mathbf{r}) \, d\mathbf{r}$$

• Modeled equation for filtered Heaviside function

$$\frac{\partial}{\partial t}(\overline{\mathcal{G}}) + \widetilde{u}_j \frac{\partial}{\partial x_j}(\overline{\mathcal{G}}) + \overline{\Gamma}_u = \frac{\rho_u}{\overline{\rho}} \left[\left(\overline{\mathcal{D}_C \kappa} \right)_{\overline{T}, u} + s_{\overline{T}, u} \right] \left| \nabla \overline{\mathcal{G}} \right|$$

describes evolution of filtered front, but cannot be adequately resolved in LES

• Introduce level set function describing filtered front evolution

$$\widehat{G}(\mathbf{x},t) = G_0 \quad \forall \quad \overline{\mathcal{G}}(\mathbf{x},t) = \mathcal{G}_0 \quad |\nabla \widehat{G}(\mathbf{x},t)| = 1 \quad \forall \quad \overline{\mathcal{G}}(\mathbf{x},t)$$

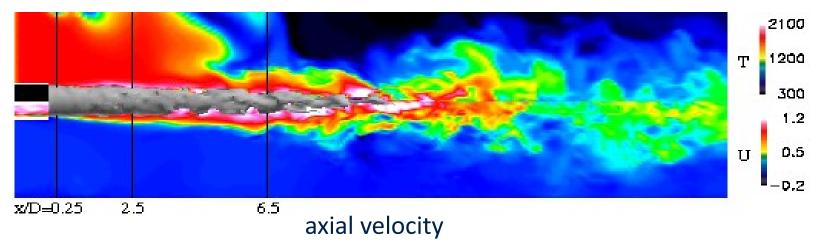
gives level set equation for filtered flame front

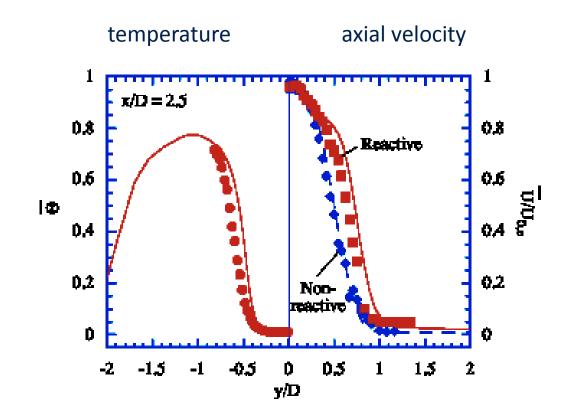
$$\frac{\partial}{\partial t}(\hat{G}) + \tilde{u}_j \frac{\partial}{\partial x_j}(\hat{G}) = \frac{\rho_u}{\bar{\rho}} [\mathcal{D}_{t,u}\bar{\kappa} + s_{T,u}] |\nabla \hat{G}|$$

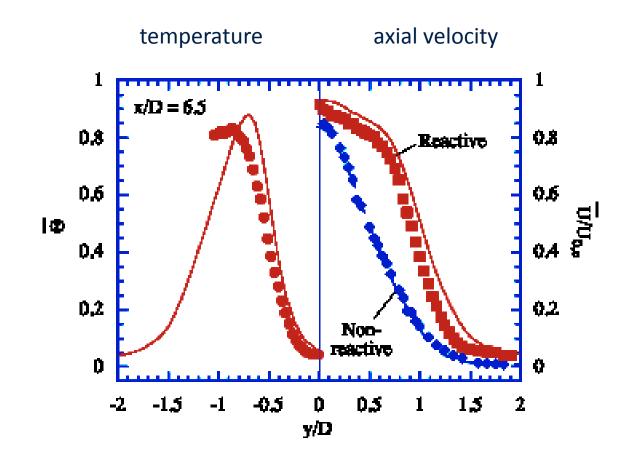
- Premixed methan/air flame
- *Re* = 23486
- Broad, low velocity pilot flame → heat losses to burner
- Dilution by air co-flow

temperature

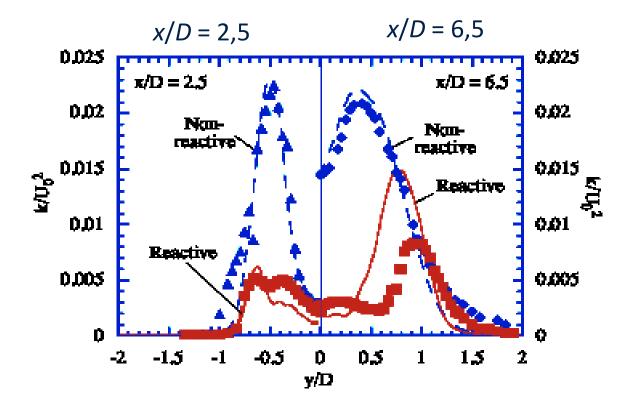
itv





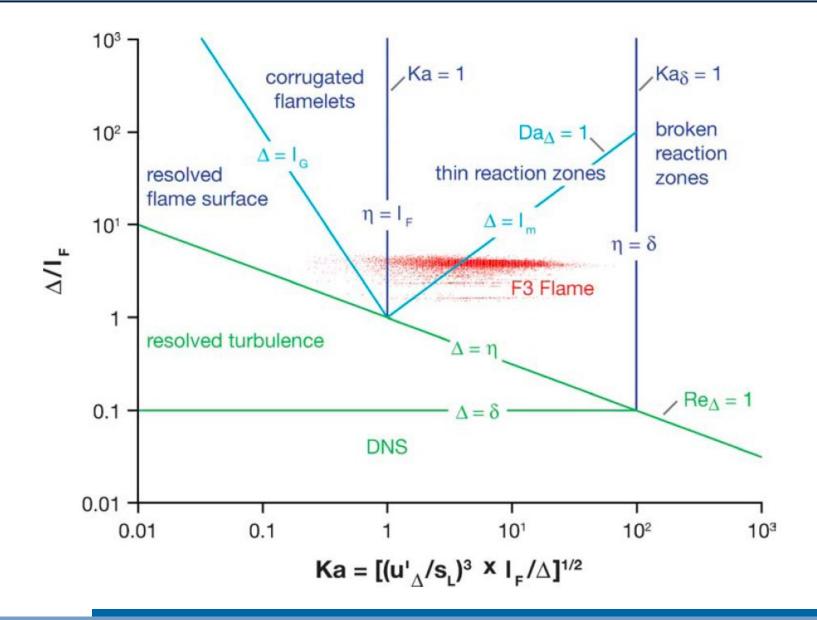


Turbulent Kinetic Energie at Position x/D = 2.5 and 6.5



itv

LES Regime Diagram for Premixed Turbulent Combustion



Course Overview

Part II: Turbulent Combustion

- Turbulence
- Turbulent Premixed Combustion
- Turbulent Non-Premixed
 Combustion
- Turbulent Combustion Modeling
- Applications

- Moment Methods for reactive scalars
- Simple Models in Fluent: EBU,EDM, FRCM, EDM/FRCM
- Introduction in Statistical Methods: PDF, CDF,...
- Transported PDF Model
- Modeling Turbulent Premixed Combustion
 - BML-Model
 - Level Set Approach/G-equation
- Modeling Turbulent Non-Premixed Combustion
 - Conserved Scalar Based Models for Non-Premixed Turbulent Combustion
 - Flamelet-Model
 - Application: RIF, steady flamelet model

Mixture Fraction Z

- Assume
 - One-step global reaction: $v_F F + v_O O \rightarrow v_P P$
 - $Le_i = 1$
- Species transport and temperature equations

$$\rho \frac{\partial Y_i}{\partial t} + \rho \boldsymbol{v} \cdot \nabla Y_i = \nabla \cdot (\rho D \nabla Y_i) + W_i \nu_i w$$
$$\rho \frac{\partial T}{\partial t} + \rho \boldsymbol{v} \cdot \nabla T = \nabla \cdot (\rho D \nabla T) + \frac{Q}{c_p} w$$

• With

$$L(\phi) = \rho \frac{\partial \phi}{\partial t} + \rho \boldsymbol{v} \cdot \nabla \phi - \nabla \cdot (\rho D \nabla \phi)$$

follows

$$L(Y_i) = W_i \nu_i w$$
$$L(T) = \frac{Q}{c_p} w$$

• Derive coupling function β by eliminating *w* such that

 $L(\beta) = 0$

• With

$$\nu = \frac{W_{\rm O}\nu_{\rm O}}{W_{\rm F}\nu_{\rm F}}$$

and

$$L(\nu Y_F) = W_O \nu_O w$$
$$L(Y_O) = W_O \nu_O w$$

follows

$$\beta \equiv \nu Y_{\rm F} - Y_{\rm O}$$

• Normalization between 0 and 1 gives

$$Z \equiv \frac{\beta - \beta_2}{\beta_1 - \beta_2} = \frac{\nu Y_{\rm F} - Y_{\rm O} + Y_{{\rm O},2}}{\nu Y_{{\rm F},1} + Y_{{\rm O},2}}$$

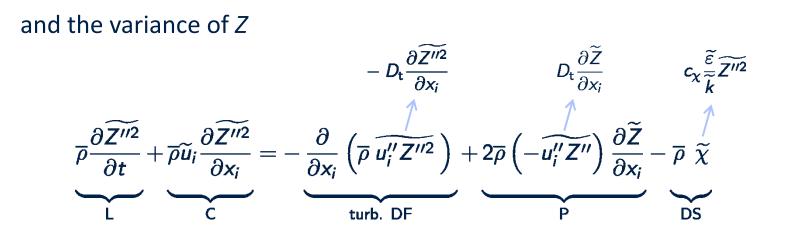
• Transport equation

- Advantage: $L(Z) = 0 \rightarrow No$ Chemical Source Term
- BC: Z = 0 in Oxidator, Z = 1 in Fuel
- If species and temperature function of mixture fraction, then

$$\widetilde{T} = \int_{-\infty}^{+\infty} T(Z) \, \widetilde{f}(Z) \, \mathrm{d}Z \quad \text{and} \quad \widetilde{Y}_i = \int_{-\infty}^{+\infty} Y_i(Z) \, \widetilde{f}(Z) \, \mathrm{d}Z$$

- Needed:
 - Local statistics of Z (expressed by PDF)
 - Species/temperature as function of Z: $Y_i(Z)$ and T(Z)

• Equation for the mean



are known and closed

Presumed PDF Approach

• β -function pdf for mixture fraction Z

$$\widetilde{f}(Z; x_i, t) = \frac{Z^{\alpha-1}(1-Z)^{\beta-1}\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}$$

• With

$$lpha = \widetilde{Z}\gamma, \quad eta = (1 - \widetilde{Z})\gamma \quad ext{and}$$
 $\gamma = rac{\widetilde{Z}(1 - \widetilde{Z})}{\widetilde{Z''^2}} - 1 \geq 0$

$$\widetilde{T} = \int_{-\infty}^{+\infty} T(Z) \widetilde{f}(Z) dZ, \quad \widetilde{Y}_{i} = \int_{-\infty}^{+\infty} Y_{i}(Z) \widetilde{f}(Z) dZ$$

$$\int_{-\infty}^{0} \widetilde{f}(Z) dZ, \quad \widetilde{Y}_{i} = \int_{-\infty}^{+\infty} Y_{i}(Z) \widetilde{f}(Z) dZ$$

$$\int_{-\infty}^{0} \widetilde{f}(Z) dZ, \quad \widetilde{Y}_{i} = \int_{-\infty}^{+\infty} Y_{i}(Z) \widetilde{f}(Z) dZ$$

$$\int_{-\infty}^{0} \widetilde{f}(Z) dZ, \quad \widetilde{Y}_{i} = \int_{-\infty}^{+\infty} Y_{i}(Z) \widetilde{f}(Z) dZ$$

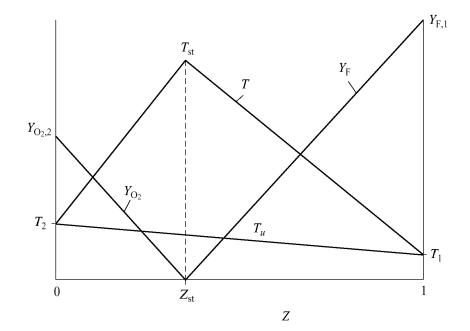
Conserved Scalar Based Models for Non-Premixed Turbulent Combustion

- Infinitely fast irreversible chemistry
 - Burke-Schumann solution
 - Solution = f(Z)
- Infinitely fast reversible chemistry
 - Chemical equilibrium
 - Solution = f(Z)

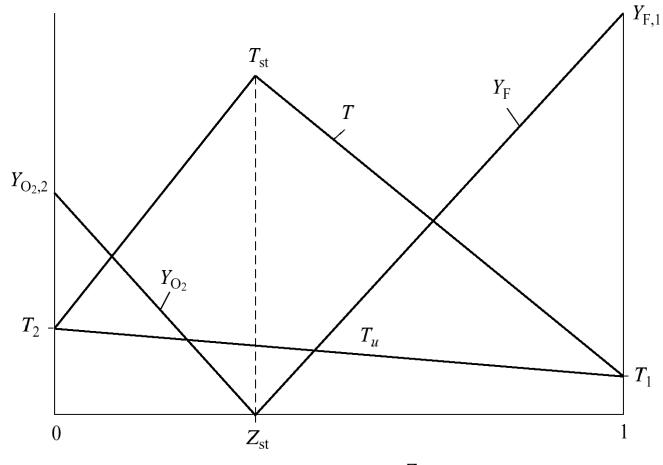
- $T = \int_{-\infty}^{+\infty} T(Z) \tilde{f}(Z) dZ, \quad \widetilde{Y}_i = \int_{-\infty}^{+\infty} Y_i(Z) \tilde{f}(Z) dZ$
- Flamelet model for non-premixed combustion
 - Chemistry fast, but not infinitely fast
 - Solution = $f(Z, \chi)$
- Conditional Moment Closure (CMC)
 - Similar to flamelet model
 - Solution = $f(Z, < \chi | Z >)$

- Infinitely fast irreversible chemistry
 - Burke-Schumann solution
 - Solution = f(Z)
- Infinitely fast reversible chemistry
 - Chemical equilibrium
 - Solution = f(Z)

 $\widetilde{T} = \int_{-\infty}^{+\infty} T(Z) \widetilde{f}(Z) dZ, \quad \widetilde{Y}_i = \int_{-\infty}^{+\infty} Y_i(Z) \widetilde{f}(Z) dZ$



Burke-Schumann Solution



Ζ

104

Course Overview

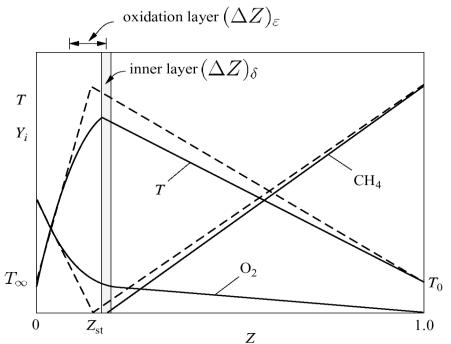
Part II: Turbulent Combustion

- Turbulence
- Turbulent Premixed Combustion
- Turbulent Non-Premixed
 Combustion
- Turbulent Combustion Modeling
- Applications

- Moment Methods for reactive scalars
- Simple Models in Fluent: EBU,EDM, FRCM, EDM/FRCM
- Introduction in Statistical Methods: PDF, CDF,...
- Transported PDF Model
- Modeling Turbulent Premixed Combustion
 - BML-Model
 - Level Set Approach/G-equation
- Modeling Turbulent Non-Premixed Combustion
 - Conserved Scalar Based Models for Non-Premixed Turbulent Combustion
 - Flamelet-Model
 - Application: RIF, steady flamelet model

Flamelet Model for Non-Premixed Turbulent Combustion

- Basic idea: Scale separation
- Assume fast, but not infinitely fast chemistry: 1 << Da << ∞
- Reaction zone is thin compared to small scales of turbulence and hence retains laminar structure
- Transformation and asymptotic approximation leads to flamelet equations



• Balance equations for temperature, species and mixture fraction

$$\rho \frac{\partial T}{\partial t} + \rho u_i \frac{\partial T}{\partial x_i} - \frac{\partial}{\partial x_i} \left(\rho D \frac{\partial T}{\partial x_i} \right) = -\sum_{\alpha=1}^n \frac{h_\alpha}{c_\rho} \dot{m}_\alpha^{\prime\prime\prime} + \frac{\dot{q}_R^{\prime\prime\prime}}{c_\rho} + \frac{1}{c_\rho} \frac{\partial \rho}{\partial t}$$
$$\rho \frac{\partial Y_\alpha}{\partial t} + \rho u_i \frac{\partial Y_\alpha}{\partial x_i} - \frac{\partial}{\partial x_i} \left(\rho D \frac{\partial Y_\alpha}{\partial x_i} \right) = \dot{m}_\alpha^{\prime\prime\prime}$$
$$\rho \frac{\partial Z}{\partial t} + \rho u_i \frac{\partial Z}{\partial x_i} - \frac{\partial}{\partial x_i} \left(\rho D \frac{\partial Z}{\partial x_i} \right) = 0$$

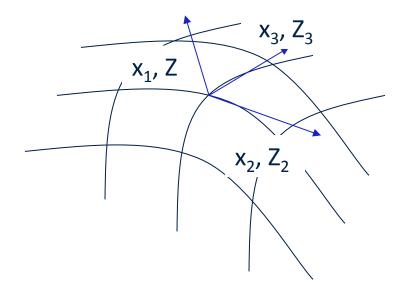
• With

$$\mathcal{L} \equiv \rho \frac{\partial}{\partial t} + \rho u_i \frac{\partial}{\partial x_i} - \frac{\partial}{\partial x_i} \left(\rho D \frac{\partial}{\partial x_i} \right)$$

it follows

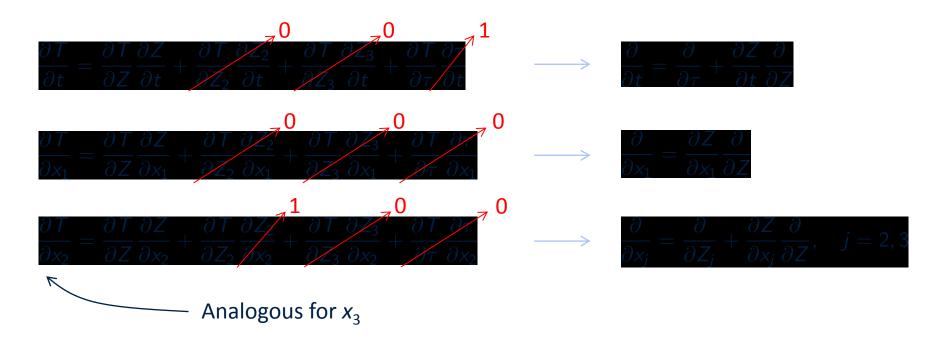
$$\mathcal{L}(T) = -\sum_{\alpha=1}^{n} \frac{h_{\alpha}}{c_{p}} \dot{m}_{\alpha}^{\prime\prime\prime} + \frac{\dot{q}_{\mathsf{R}}^{\prime\prime\prime}}{c_{p}} + \frac{1}{c_{p}} \frac{\partial p}{\partial t}, \qquad \mathcal{L}(Y_{\alpha}) = \dot{m}_{\alpha}^{\prime\prime\prime} \qquad \text{and} \qquad \mathcal{L}(Z) = 0$$

- Consider surface of stoichiometric mixture
- Reaction zone confined to thin layer around this surface
- Transformation to surface attached coordinate system
- $x_1, x_2, x_3, t \rightarrow Z(x_1, x_2, x_3, t), Z_2, Z_3, \tau$



Transformation rules

- Transformation: $x_1, x_2, x_3, t \rightarrow Z(x_1, x_2, x_3, t), Z_2, Z_3, \tau$ (where $Z_2 = x_2, Z_3 = x_3, \tau = t$)
 - $\psi(x_1, x_2, x_3, t) \quad o \quad \psi(Z(x_1, x_2, x_3, t), Z_2, Z_3, au)$
- Example: Temperature *T*

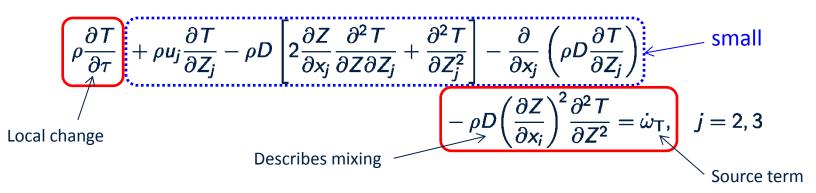


• Temperature equation

$$\mathcal{L}(T) = -\sum_{\alpha=1}^{n} \frac{h_{\alpha}}{c_{p}} \dot{m}_{\alpha}^{\prime\prime\prime} + \frac{\dot{q}_{\mathsf{R}}^{\prime\prime\prime}}{c_{p}} + \frac{1}{c_{p}} \frac{\partial p}{\partial t} = \dot{\omega}_{\mathsf{T}}$$

→ Transformed temperature equation:

$$\rho \frac{\partial T}{\partial \tau} + \rho u_j \frac{\partial T}{\partial Z_j} - \rho D \left[2 \frac{\partial Z}{\partial x_j} \frac{\partial^2 T}{\partial Z \partial Z_j} + \frac{\partial^2 T}{\partial Z_j^2} \right] - \frac{\partial}{\partial x_j} \left(\rho D \frac{\partial T}{\partial Z_j} \right) - \rho D \left(\frac{\partial Z}{\partial x_i} \right)^2 \frac{\partial^2 T}{\partial Z^2} = \dot{\omega}_{\mathsf{T}}, \quad j = 2, 3$$



• If the flamelet is thin in the Z direction, an order-of-magnitude analysis similar to that for a boundary layer shows that

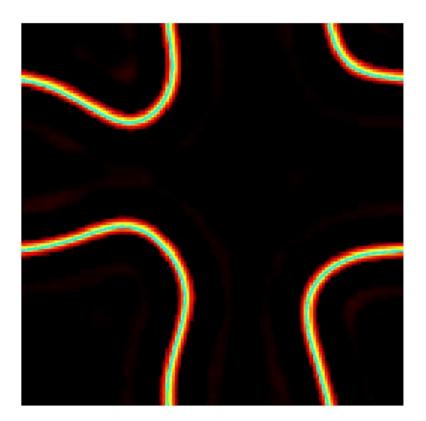
$$\left(\frac{\partial Z}{\partial x_i}\right)^2 \frac{\partial^2 T}{\partial Z^2}$$

is the dominating term of the spatial derivatives

- Equivalent to the assumption that temperature derivatives normal to the flame surface are much larger than those in tangential direction
- $\partial T/\partial \tau$ is important if very rapid changes, such as extinction, occur

Example

• Example from DNS of Non-Premixed Combustion in Isotropic Turbulence



- Temperature (color)
- Stoichiometric mixture fraction (line)

Flamelet Equations

 \rightarrow

itv

- Same procedure for the mass fraction...
- Flamelet structure is to leading order described by the one-dimensional timedependent equations

$$\rho \frac{\partial T}{\partial \tau} - \frac{\rho \chi_{\rm st}}{2} \frac{\partial^2 T}{\partial Z^2} = \dot{\omega}_{\rm T}$$

$$\rho \frac{\partial Y_{\alpha}}{\partial \tau} - \frac{\rho \chi_{\rm st}}{2} \frac{\partial^2 Y_{\alpha}}{\partial Z^2} = \dot{m}_{\alpha}^{\prime\prime\prime}$$

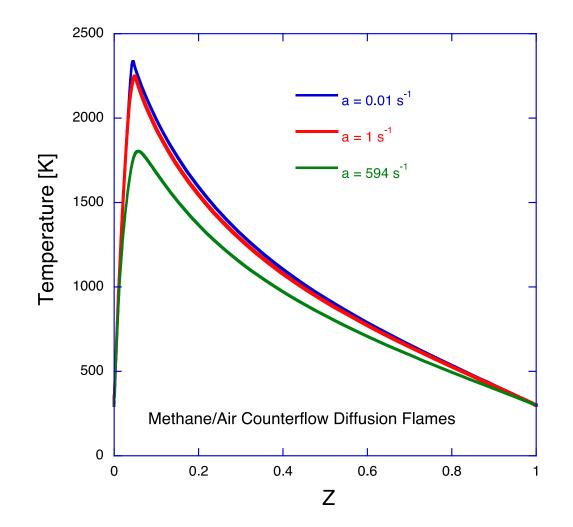
$$\rho \frac{\partial \psi_i}{\partial \tau} - \frac{\rho \chi_{\rm st}}{2} \frac{\partial^2 \psi_i}{\partial Z^2} = \dot{\omega}_{\psi_i}$$

• Instantaneous scalar dissipation rate at stoichiometric conditions

$$\chi_{\rm st} = 2D \left(\frac{\partial Z}{\partial x_i} \right)^2 \Big|_{\rm st}$$

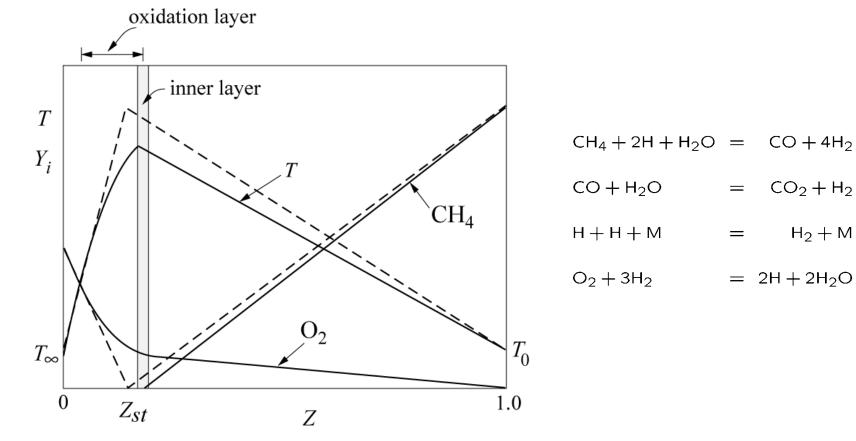
 \rightarrow [χ_{st}] = 1/s: may be interpreted as the inverse of a characteristic diffusion time

• Temperature profiles for methane-air flames

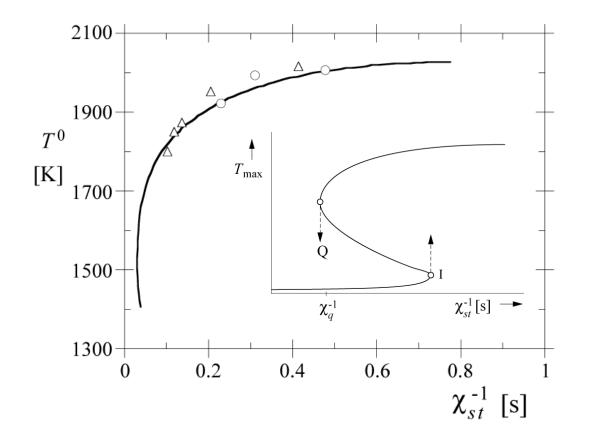


Flamelet Equations

- Asymptotic analysis by Seshadri (1988)
 - Based on four-step model
 - Close correspondence between layers identified in premixed diffusion flames



- The calculations agree well with numerical and experimental data
- They also show the vertical slope of T^0 versus χ_{st} which corresponds to extinction

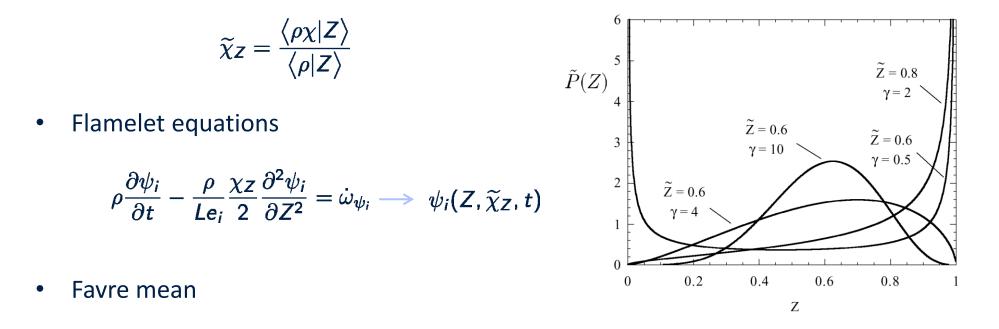


- Steady state flamelet equations provide $\psi_i = f(Z, \chi_{st})$
- If joint pdf $\tilde{P}(Z, \chi_{st})$ is known
 - \rightarrow Favre mean of ψ_i :

$$\widetilde{\psi}_i(x_j, t) = \int_0^1 \int_0^\infty \psi_i(Z, \chi_{\rm st}) \widetilde{P}(Z, \chi_{\rm st}; x_j, t) d\chi_{\rm st} dZ$$

- If the unsteady term in the flamelet equation must be retained, joint statistics of Z and χ_{st} become impractical
- Then, in order to reduce the dimension of the statistics, it is useful to introduce multiple flamelets, each representing a different range of the χ -distribution
- Such multiple flamelets are used in the Eulerian Particle Flamelet Model (EPFM) by Barths et al. (1998)
- Then the scalar dissipation rate can be formulated as function of the mixture fraction

• Modeling the conditional Favre mean scalar dissipation rate



$$\widetilde{\psi}_i(x_j,t) = \int_0^1 \psi_i(Z,\widetilde{\chi}_Z,t)\widetilde{P}(Z;x_j,t) \mathrm{d}Z, \quad \text{with} \quad \widetilde{P}(Z;x_j,t) = \frac{Z^{\alpha-1}(1-Z)^{\beta-1}\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}$$

Flamelet Equations

- Model for conditional scalar dissipation rate $\tilde{\chi}_Z$
- One relates the conditional scalar dissipation rate to that at a fixed value Z_{st} by

- Flamelet equations are unsteady
- RIF model solves unsteady flamelet equations coupled with CFD code¹
- Describes ignition, combustion, and pollutant formation for non-premixed combustion \rightarrow Typical application for diesel engines

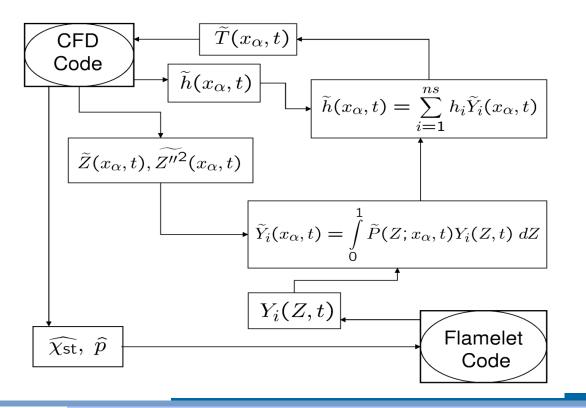
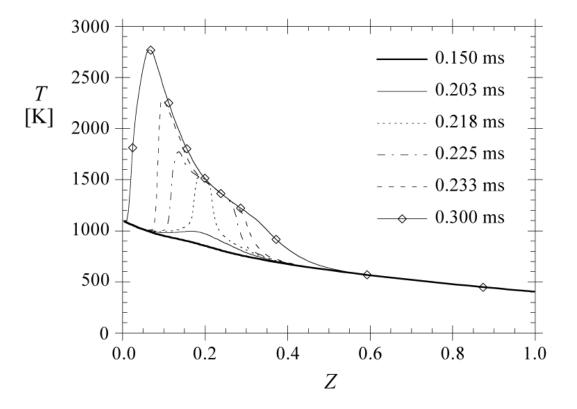


Illustration of coupling between RIF code and CFD code

¹ Barths, H., Pitsch, H., Peters, N., 3D Simulation of DI Diesel Combustion and Pollutant Formation Using a Two-Component Reference Fuel, Oil & Gas Science and Technology Rev. IFP 54, pp. 233-244, 1999.

• The initial air temperature is 1100 K and the initial fuel temperature is 400 K.



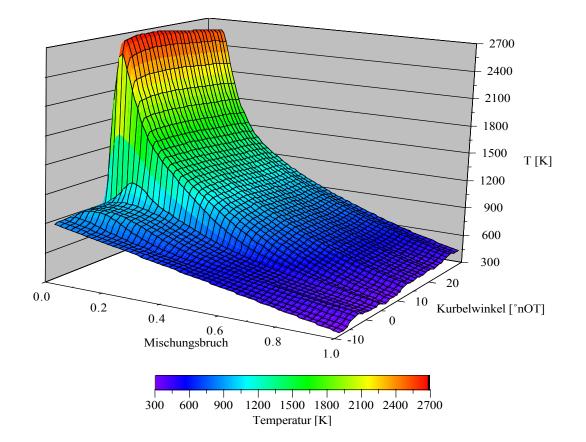
- VW 1,9 | DI-Diesel engine (Fuel: *n*-Heptan)
- Simulation:
 - KIVA-Code
 - RIF-Model
 - *n*-Heptan detailed chemistry
 - Soot and No_x as function of EGR

Model:	Volkswagen DI 1.91
Piston Displacement:	$1896 \ {\rm cm^3}$
Bore:	79.5 mm
Stroke:	$95.0 \mathrm{~mm}$
Connecting Rod Length:	144.0 mm
Compression Ratio:	17.5:1
Nozzle:	5-Hole

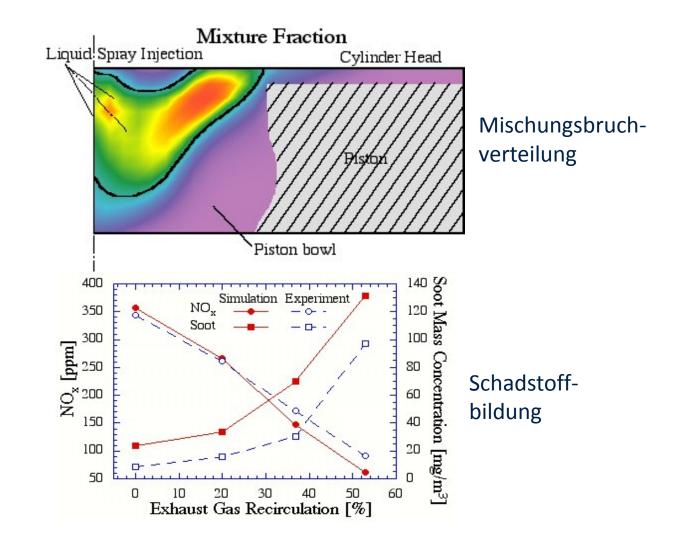
Nozzle:	5-Hole
Hole Diameter:	$0.194 \mathrm{~mm}$
Opening Pressure:	250 bar
Injection Angle:	150°

Operation Point:	2000 rpm
Fuel:	n-Heptane
Injected Fuel Mass:	$8 \mathrm{mg}$

• RIF-Temperature



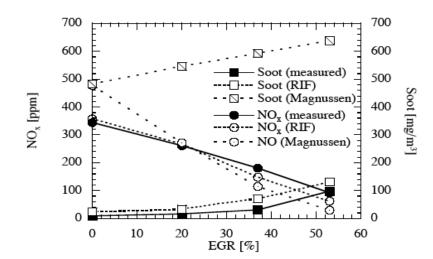
Example: Diesel engine simulation

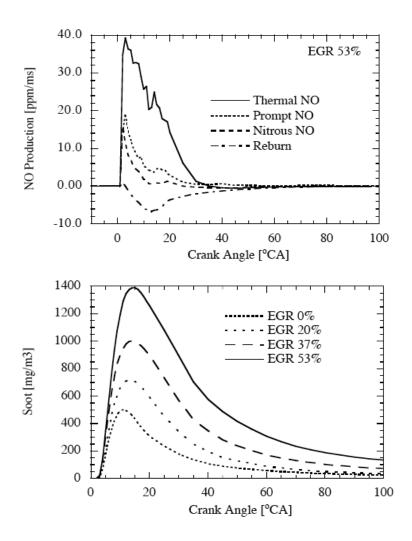


124

Example: Diesel engine simulation

 Comparison with Magnussen-/ Hiroyasu-Model





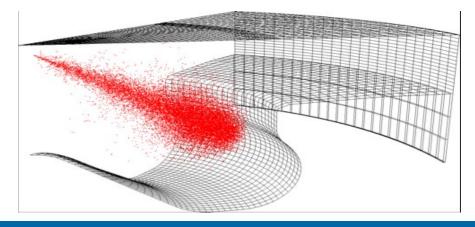
Example: ITV Diesel Engine Test Bench

Engine type	4 cylinder diesel engine
Bore	82.0 mm
Stroke	90.4 mm
Displacement	1910 mm³
Pistons	Reentrant type
Compression ratio	17.5:1
Valves	16 V
Max. Power	110 kW (150 PS)
Swirl number	2.5
Injection system	Bosch Common-Rail (2nd generation),
	central injector position,
	7 holes nozzle

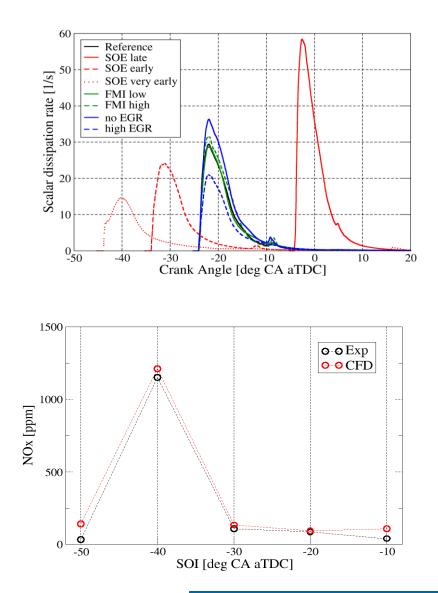
- The range of operation was extended for partially homogenized conditions (PCCI)
- High performance measurement equipment
- Rapid and dynamic measurement of EGR
- Fast sensors with cycle-to-cycle resolution for $NO_{x}\xspace$ and uHC
- Stationary measurement of soot, CO, CO2, ...

Numerical Setup

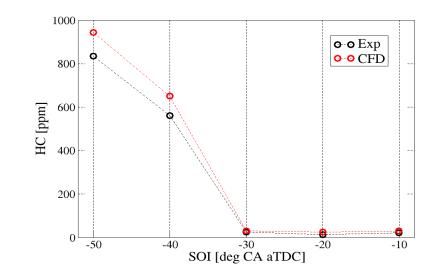
- Multidimensional CFD-RANS code AC-FLuX
- Computations performed for variations in
- Start of energizing (SOE): 10, 20, 30, 40 and 50 deg CA bTDC
- -Fuel mass injected (FMI): 11, 12, 13.5 and 17.5 mm3/cycle
- Exhaust gas recirculation (EGR): 0, 15, 26, 33 and 34 %
- Computations from IVC to EVO
- Sector grid of the combustion chamber (~ 50000 cells)
- Two different meshes for compression and combustion
- RIF combustion model initialized at start of injection



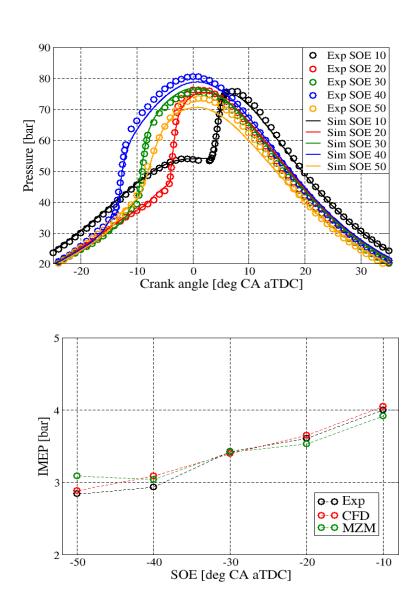
Multi-Zone Model Results



- Scalar dissipation rate:
- Strong influence of SOE on position and maximum
- FMI and EGR only affect the maximum value
- IMEP:
- Good qualitative agreement
- Noticeable deviation at SOE 50
- CA50:
- Even better agreement
- Only minor deviations observable

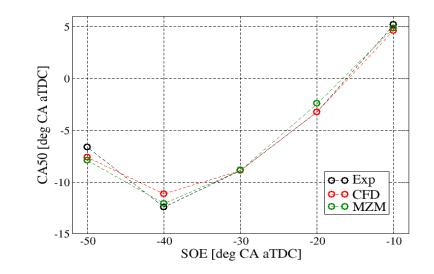


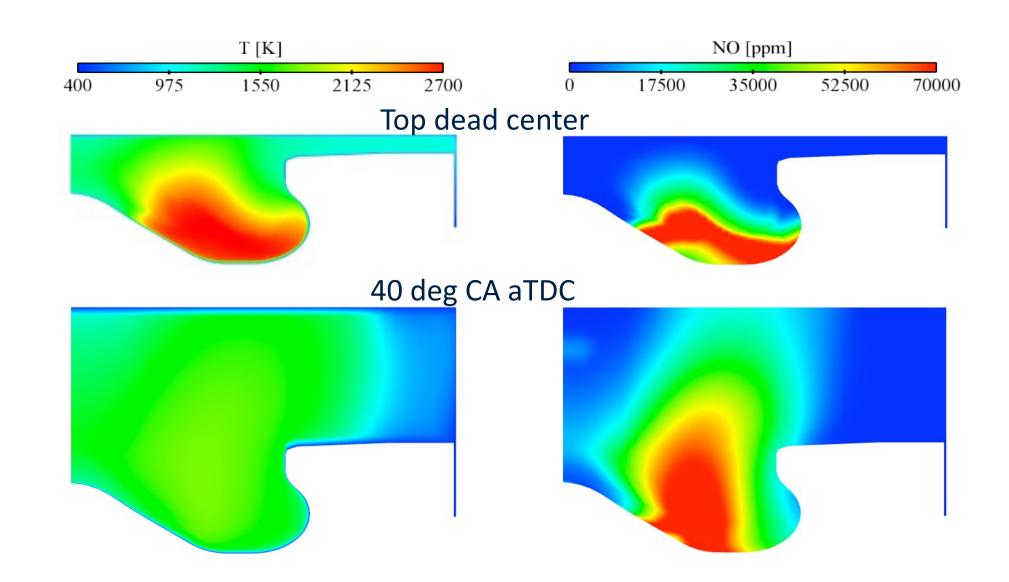
Results

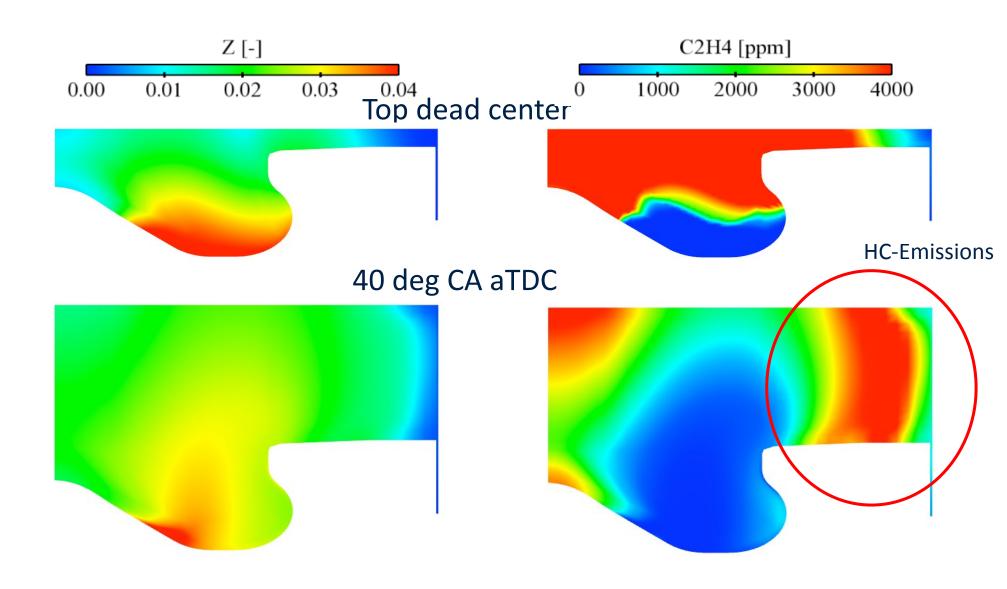


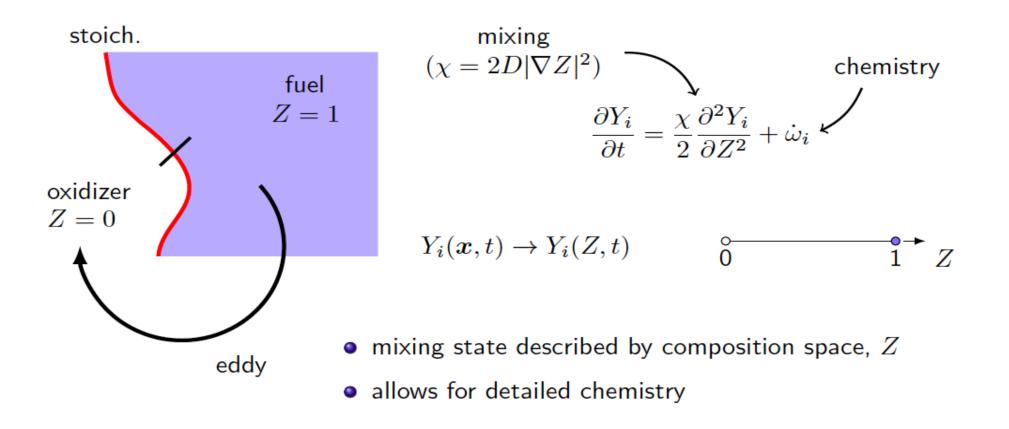
• Good agreement in terms of in-cylinder pressure

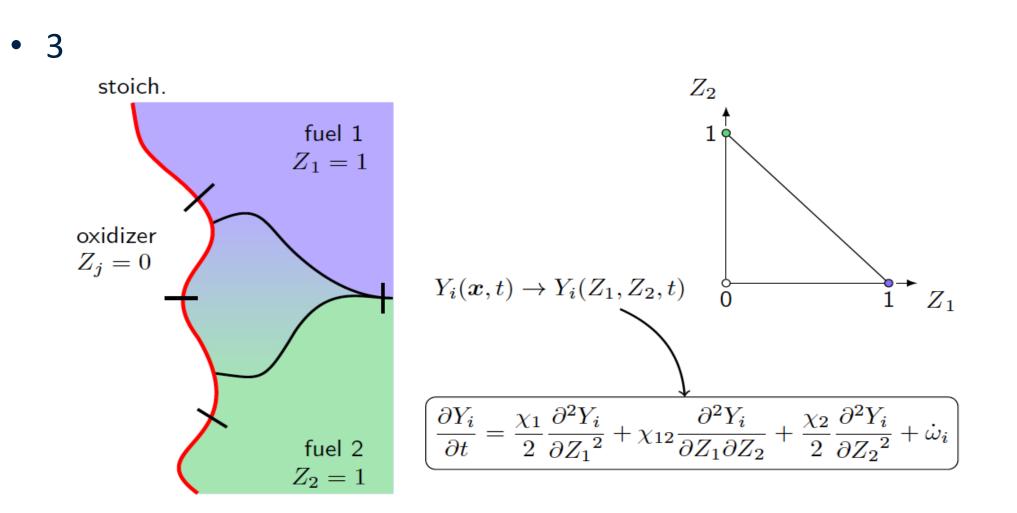
- Ignition delay
- Combustion
- Peak pressure
- Expansion
- Nitrogen oxides (NOx) and unburned hydrocarbons (HC):
 - Simulation captures experimental trend
- Minor deviations for latest injection timing (NO_x) and early injection timings (HC)



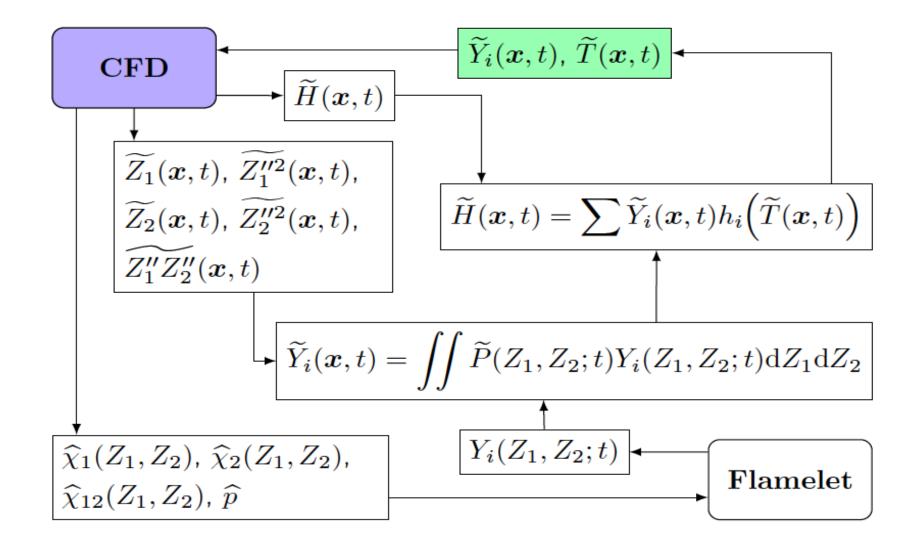




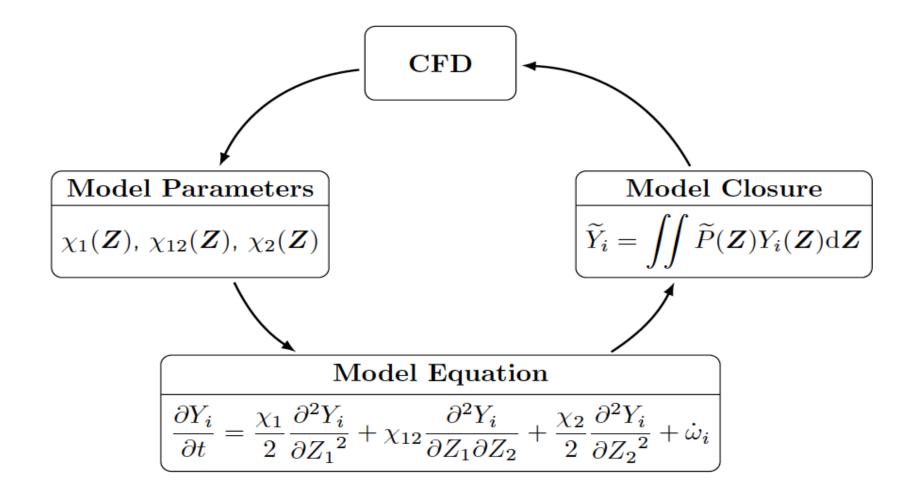




it l



Multi-D Flamelet Models for Turbulent Combustion



Example: High Fidelity Modeling of Multi-Injection Diesel Engine Application

Specifications• Bore:84.7 mm• Stroke:90 mm• Displacement:0.5 L

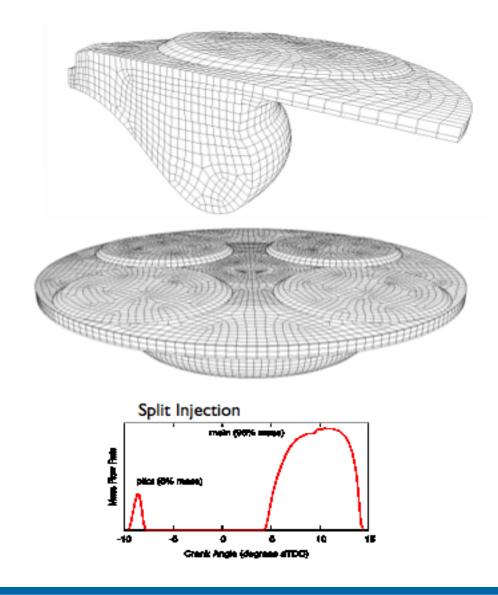
Compression Ratio: 16

Operating Conditions

- Engine Speed: 2000 RPM
- IMEP: 8 bar
- Swirl Ratio: 2
- EGR: 20-30%

Bosch 7 hole Injector (CRI3.0/CRI3.2)

- Rail Pressure: 1500 bar
- Spray Angle: 160 degrees



Combustion Model

 Multi-dimensional flamelet model

CFD

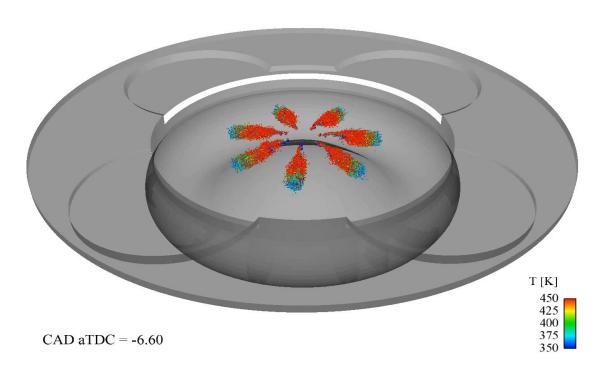
- Fluent Turbulent RANS
- k-epsilon realizable

Spray Model

- Discrete phase
- WAVE breakup model

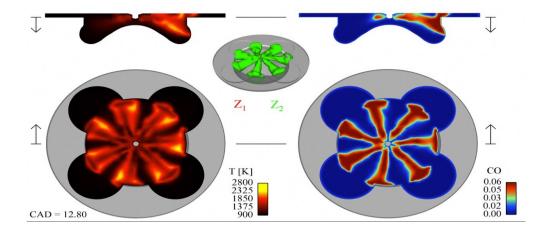
Mechanism^[1]

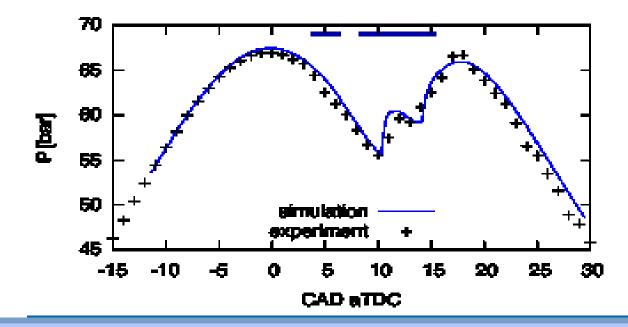
- n-heptane
- 36 species



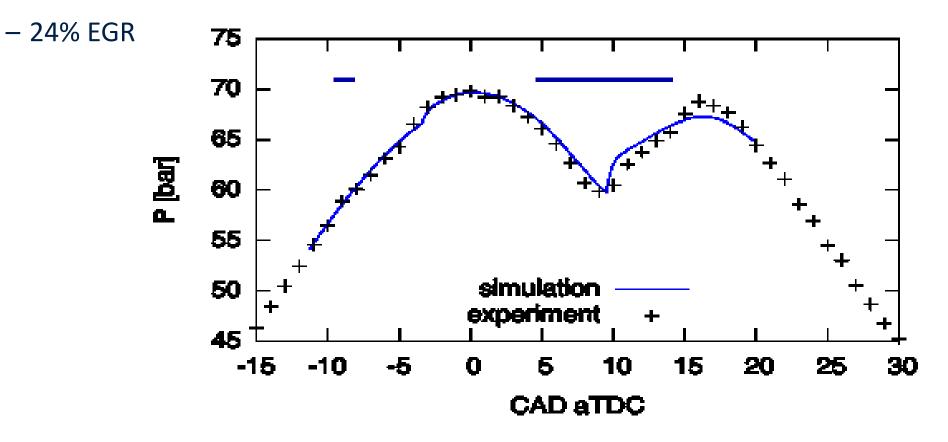
Close Pilot Injection

- Close pilot injection:
 - IMEP: 8 bar
 - 28% EGR





- Classic pilot injection:
- IMEP: 8 bar



• Assumption that flame structure is in steady state

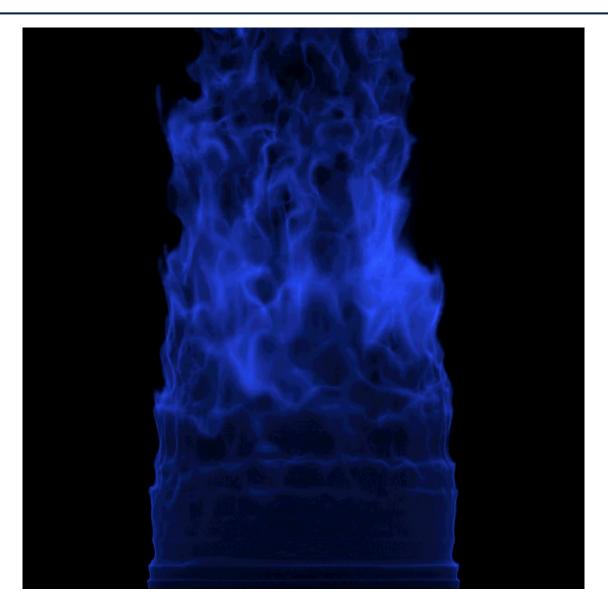
$$\rho \frac{\partial T}{\partial \tau} - \frac{\rho \chi_{\rm st}}{2} \frac{\partial^2 T}{\partial Z^2} = \dot{\omega}_{\rm T}$$
$$\rho \frac{\partial Y_{\alpha}}{\partial \tau} - \frac{\rho \chi_{\rm st}}{2} \frac{\partial^2 Y_{\alpha}}{\partial Z^2} = \dot{m}_{\alpha}^{\prime\prime\prime}$$

- Assumption often good, except slow chemical and physical processes, such as
 - Pollutant formation
 - Radiation
 - Extinction/re-ignition
- Model formulation
 - Solve steady flamelet equations with varying χ_{st}
 - Tabulate in terms of χ_{st} or progress variable C, e.g. C = $Y_{CO2} + Y_{HO2} + Y_{CO} + Y_{H2}$
 - Presumed PDF, typically beta function for *Z*, delta function for dissipation rate or reaction progress parameter
 140

- Bluff-body stablized methane/air flame
- Fuel issues through center of bluff body
- Flame stabilization by complex recirculating flow
- RANS models where unsuccessful in predicting experimental data
- Here, LES using simple steady flamelet model
- New recursive filter refinement method
- Accurate models for scalar variance and scalar dissipation rate

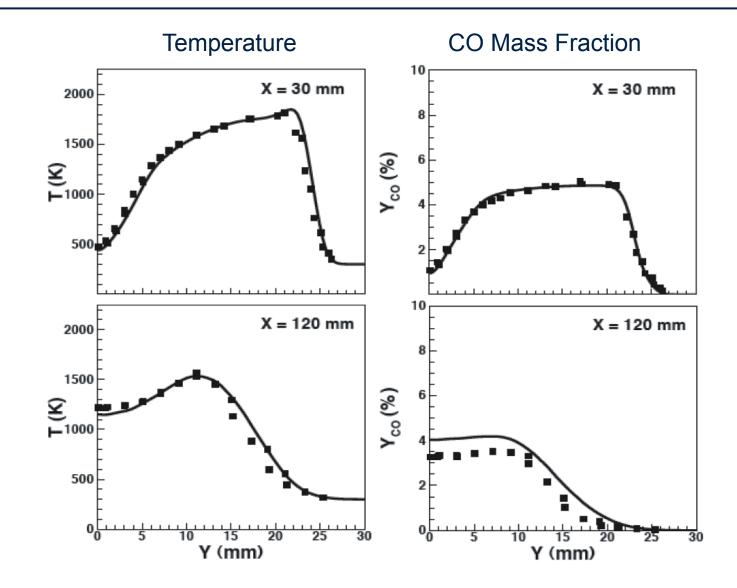
Exp. by Masri et al.

Example: LES of a Bluff-Body Stabilized Flame



142

Example: LES of a Bluff-Body Stabilized Flame



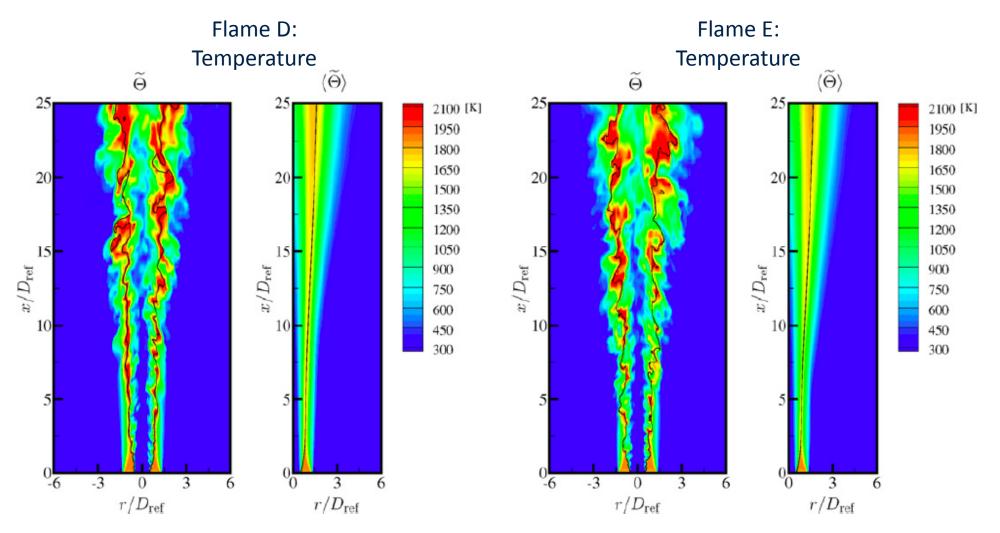
143

Flamelet model application to jet flame with extinction and reignition

- Flamelet/progress variable model (Ihme & Pitsch, 2008)
- Definition of reaction progress parameter
 - Based on progress variable C
 - Defined to be independent of Z
- Joint pdf of Z and λ
 - Z and λ independent
 - Beta function for Z
 - Statistically most likely distribution for λ

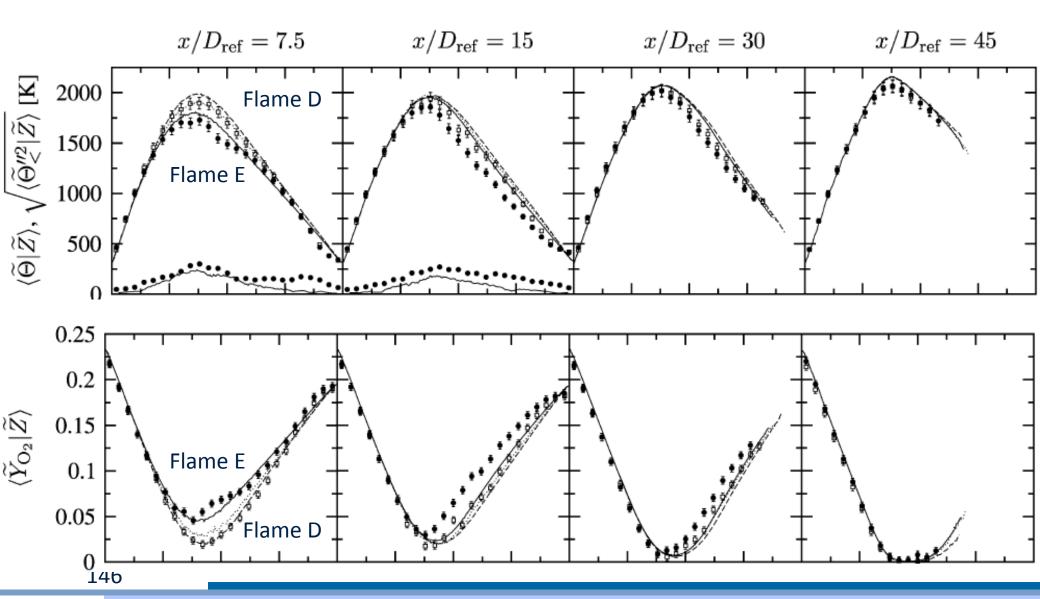
Exp. by Barlow et al.

Flamelet Model Application to Sandia Jet Flames



145

Flamelet Model Application to Sandia Jet Flames



Summary

Part II: Turbulent Combustion

- Turbulence
- Turbulent Premixed Combustion
- Turbulent Non-Premixed
 Combustion
- Turbulent Combustion Modeling
- Applications

- Moment Methods for reactive scalars
- Simple Models in Fluent: EBU,EDM, FRCM, EDM/FRCM
- Introduction in Statistical Methods: PDF, CDF,...
- Transported PDF Model
- Modeling Turbulent Premixed Combustion
 - BML-Model
 - Level Set Approach/G-equation
- Modeling Turbulent Non-Premixed Combustion
 - Conserved Scalar Based Models for Non-Premixed Turbulent Combustion
 - Flamelet-Model
 - Application: RIF, steady flamelet model