Multireference Correlated Wavefunction Calculations and Reaction Flux Analyses of Methyl Ester Combustion

Tsz S. Chwee, David Krisiloff, Victor Oyeyemi, Ting Tan, Michele Pavone, and Emily A. Carter

Departments of Chemistry, Chemical Engineering, and Mechanical and Aerospace Engineering and Program in Applied and Computational Mathematics
Princeton University

$\text{: NSF, A*STAR, DOE-BES}$

See Victor Oyeyemi’s poster today
Common biodiesel derived from rapeseed oil and soybeans:

- Methyl esters (R(C=O)OCH₃): methyl palmitate (C₁₇H₃₄O₂), stearate (C₁₉H₃₈O₂), oleate (C₁₉H₃₆O₂), linoleate (C₁₉H₃₄O₂), linolenate (C₁₉H₃₂O₂) – first two fully saturated, last three increasing number of C=C bonds

- Predict pyrolysis reaction energetics: breaking C-H, C-C, C=C, C-O, C=O bonds

- Predict kinetics of most important/most uncertain combustion reaction steps

- Compare to smaller methyl esters to test “group additivity”

- How to treat such large molecules with accurate QM? MRSDCI O(N⁶)... fast new algorithms for accurate QM.
Thermochemical Kinetics from Quantum Chemistry

- **Structure Optimization**
 - Conformation Search for Global and Statistically Favored Minima using Molecular Mechanics (Classical Force Fields)
 - Local Refinement at Hartree-Fock and/or DFT B3LYP Levels

- **Thermochemistry**
 - C-H, C-C, C-O bond dissociation energies using CASSCF/L-MRSDCI/L-MRAPCF with basis set extrapolation

- **Kinetics**
 - Reaction Flux and Sensitivity Analyses to identify most important/most uncertain reaction steps
 - DFT B3LYP determination of reaction paths/structures and zero point energies/thermal corrections
 - L-MRSDCI/MRACPF prediction of activation energies
Multireference Configuration Interaction (MRCI)

Configuration Interaction Expansion

\[\Psi^{CI} = \sum_R c_R \Psi_R + \sum_{i,a} c_i^a \Psi_i^a + \sum_{i,j,ab} c_{ij}^{ab} \Psi_{ij}^{ab} + \sum_{i,j,k,abc} c_{ijk}^{abc} \Psi_{ijk}^{abc} \]

Solve eigenvalue equation: \(HC = EC \)

\[
\begin{bmatrix}
< \Psi_0 | H | \Psi_0 > & < \Psi_0 | H | \Psi_i^a > & \cdots & < \Psi_0 | H | \Psi_{ij}^{ab} > \\
< \Psi_i^a | H | \Psi_0 > & < \Psi_i^a | H | \Psi_i^a > & \cdots & < \Psi_i^a | H | \Psi_{ij}^{ab} > \\
\vdots & \vdots & \ddots & \vdots \\
< \Psi_{ij}^{ab} | H | \Psi_0 > & < \Psi_{ij}^{ab} | H | \Psi_i^a > & \cdots & < \Psi_{ij}^{ab} | H | \Psi_{ij}^{ab} > \\
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_i^a \\
\vdots \\
c_{ij}^{ab} \\
\end{bmatrix} = E
\begin{bmatrix}
c_0 \\
c_i^a \\
\vdots \\
c_{ij}^{ab} \\
\end{bmatrix}
\]

Conventional scaling of electronic structure methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Scaling</th>
<th>Method</th>
<th>Scaling</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>O(N⁴)</td>
<td>CCSD</td>
<td>O(N⁶)</td>
</tr>
<tr>
<td>KS-DFT</td>
<td>O(N³)</td>
<td>CCSD(T)</td>
<td>O(N⁷)</td>
</tr>
<tr>
<td>MP2</td>
<td>O(N⁵)</td>
<td>MRSDCI</td>
<td>O(N⁶)</td>
</tr>
<tr>
<td>MP4</td>
<td>O(N⁷)</td>
<td>FCI</td>
<td>O(N!)</td>
</tr>
</tbody>
</table>
Linear scaling of 2008 PAO/IS algorithm lost (CD is $O(N^{2-3})$ scaling) but prefactor much lower
⇒ larger molecules (~50 heavy atoms) accessible w/ no loss of accuracy (μHartree error)

However, CI is not size-extensive ⇒ error grows with system size...

L-MRSDCI-IS BREAKS BONDS SMOOTHLY AND ACCURATELY: SCREENING RETAINS µH ACCURACY; LMRSDCI RECOVERS >98% CORR.

PES along the reaction coordinate for bond cleavage along the C=C bond in trans-6-dodecene ($C_{12}H_{24}$). Inset shows an expanded view of the curves.
Basis Set Extrapolation

- **Dunning-type basis sets**: correlation-consistent basis sets designed for extrapolation to the complete basis set (CBS) limit
 - cc-pVXZ where X=D, T, Q, 5, 6, for a sequence of added angular momentum functions
 - Computational cost limits the maximum cardinal number (X)

- **A Dual-Cardinal Extrapolation Scheme**:
 - CASSCF energies and correlation energies are separately extrapolated

 \[E_{tot} = E^{\text{CASSCF}} + E^{\text{cor}} \]

 - A power law scheme proposed by Truhlar

 \[
 E_X^{\text{CASSCF}} = E_\infty^{\text{CASSCF}} + A^{\text{CASSCF}} x_\infty^{-\alpha} \quad \alpha = 3.4^* \\
 E_X^{\text{cor}} = E_\infty^{\text{cor}} + A^{\text{cor}} x_\infty^{-\beta} \quad \beta = 2.4^{**}
 \]

 * Optimized for HF
 ** Optimized for CCSD

Consider largest surrogate for biodiesel for which combustion mechanism available. Reduced methyl decanoate mechanism used as input to Chemkin-Pro ... (Help from Ju and Green groups greatly appreciated!)

- Reaction flux analysis of reduced combustion mechanism* for methyl decanoate at both low and high temperature to find main pathways.
 - β-scission reactions important at both high and low temperature.
 - Addition of O_2 produces a more complex mechanism at low temperature. Isomerization and decomposition of these species need more accurate data.

- Sensitivity analysis performed to determine the sensitive reactions under adiabatic conditions at 650-1200 K.
 - Reactions of large molecule/radicals such as MD at low temperature are more sensitive than at high temperature.
 - Hydrogen abstraction reactions from large molecules sensitive at all temperatures.
 - A-factor sensitivity for concentrations of species is found to be small in general.

Connection to other C-EFRC Team Members and Expected Impact

- **Theory connections:**
 - Don Truhlar – calculation of VTST rate constants using LMRSDCI barriers/energetics as input
 - Steve Klippenstein/Jim Miller – input for high pressure kinetics
 - Bill Green – building/refinement of overall kinetic models
 - ASCR collaboration with Mark Gordon to parallelize LMRSDCI code

- **Experimental connections:**
 - Fred Dryer – flow reactor studies
 - Fokion Egolfopoulos – counterflow flame studies
 - Yiguang Ju – jet stirred reactor/PIV/LIF/molecular beam MS

- **Expected Impact:**
 - Understanding of biodiesel molecule combustion reactions as a function of temperature and pressure.