Theoretical Chemical Kinetics
and
Combustion Modeling

James A. Miller
Combustion Research Facility
Sandia National Laboratories
Livermore, CA

CEFRC Annual Meeting
Plainsboro, New Jersey
September 23, 2010
Collaborators

Judit Zádor
and
Ahren Jasper

Combustion Research Facility
Sandia National Laboratories
Livermore, CA
Scope of Research

- Theoretical Chemical Kinetics
 - reactions over multiple, interconnected potential wells
 - dissociation of weakly bound free radicals
 - collisional energy transfer in highly excited molecules (collaboration with Ahren Jasper)

- Combustion of Bio-derived Fuels (collaboration with Judit Zádor)

- The Formation of Aromatic Compounds, Polycyclic Aromatic Compounds, and Soot in Flames of Aliphatic Fuels
Theoretical Methods

1. Potential Energy Surfaces
 Pathways – H transfers, ring formation, etc.
 – manual transition-state searches
 – B3LYP/6-311++G(d,p) geometries and vib. freq.
 Energies – rQCISD(T)/dz,tz or rQCISD(T)/tz,qz extrapolated to ∞
 – “multireference correction” if T1 diagnostic exceeds ~ 0.02
 – uncertainties <~ 1 kcal/mol for minima
 – <~ 2 kcal/mol for saddlepoints

2. Microscopic Kinetics – Transition-State/RRKM Theory
 Barriers – rigid-rotor / harmonic-oscillator (+ hindered rotors for torsional modes) conventional TST
 Barrierless – Variable Reaction Coordinate TST

3. Collisional Energy Transfer – single-exponential-down model

4. Macroscopic Kinetics
 Master Equation – determine phenomenological rate coefficients
Electronic Structure Methods – Comparison with Lynch and Truhlar (2001)

Nth Smallest Error

Absolute Error / kcal mol⁻¹

UB3LYP // UB3LYP
uMP2 // uMP2
rQCISD(T) // uB3LYP
rMP2 // uMP2
rCCSD(T) // uB3LYP
rQCISD(T) // uMP2

Sandia National Laboratories
Collisional Energy Transfer in Unimolecular Reactions

- Ultimate goal is to place ME input for $P(E,J;E',J')$ on equal footing with that for $k(E,J)$
- Start with single-channel dissociations (CH_4) and use Miller-Klippenstein-Raffy solution to the 2-d ME to calculate rate constants $k(T,p)$
- Need only $<\Delta E_d>$ at dissociation limit averaged over rotations
- Direct classical trajectories using MP2/ aug’-cc-pVDZ potentials
CH$_4$-He Intermolecular Potential

![Graphs showing energy vs. R$_{CH_4}$ for different potentials: MP2/aug-cc-pVDZ, exp/6, LJ-A, and LJ-B.](image)
Energy Transfer Parameters for 8 Different Colliders

\[\langle \Delta E_d \rangle, \text{cm}^{-1} \]

\[\langle \Delta E^2 \rangle^{1/2}, \text{cm}^{-1} \]

\(T, \text{K} \)
Influence of Anharmonicity at Low Pressures

$M = \text{Ar}$

k_0, cm3 molecule$^{-1}$ s$^{-1}$

T, K

p, atm

1. Present
2. Scaled
3. JPCRD (2005)
4. Hartig (1971)

$10^6 k$, s$^{-1}$

1073 K, 1098 K, 1123 K, 1148 K

JPCRD, Present, Scaled
n-propanol H abstractions
i-propanol H abstractions
Evans-Polanyi Plot
n-isomer Radicals: Dissociation and Isomerization

![Graph showing energy changes for various reactions involving radicals.](image)
i-isomer Radicals: Dissociation and Isomerization

\[
\begin{align*}
\text{0.0 propene + OH} & \quad E = -1.9 \\
\text{vdW} & \quad E = -2.2 \\
\text{-2.2 propen-2-ol + H} & \quad E = -2.2 \\
\text{-9.0 vinyl alcohol + CH}_3 & \quad E = -9.0 \\
\text{-13.9 acetone + H} & \quad E = -13.9 \\
\text{-19.0 acetaldehyde + CH}_3 & \quad E = -19.0
\end{align*}
\]
n-propanol + HO₂
Dissociation of \(\beta_i \text{ Radical} \)

propene + OH
vinyl alcohol + CH\(_3\)

Dunlop and Tully (1993)
750 Torr He
i-propanol + OH

This work, Dunlop and Tully, Galano et al.