Theoretical Gas Phase Chemical Kinetics

Stephen J. Klippenstein

Argonne National Laboratory
Training in theoretical chemical kinetics

1. CEFRC – Summer School
 Ab Initio Theoretical Chemical Kinetics

2. Peng Zhang (Ed Law graduate student; now a CEFRC Fellow)
 Monomethylhydrazine decomposition

3. Franklin Goldsmith (Bill Green graduate student)
 Allyl + HO2

4. Mike Burke (Fred Dryer & Yiguang Ju graduate student)
 H2/O2 Combustion
Monomethyl hydrazine decomposition

- Monomethylhydrazine (MMH)
 - Diamine-based rocket fuel
 - Commonly used as bipropellant and monopropellant
 - Exothermically decomposes upon contact with either a hot surface or an oxidizer

- Thermal decomposition of MMH
 - Fuel stability and storability
 - Necessary components of mechanism of MMH oxidation
 - Have not been sufficiently studied

- Dominant reactions of MMH decomposition: NN and CN bond fission

 \[
 \text{MMH} \rightarrow \text{NH}_2 + \text{CH}_3\text{NH} \\
 \text{MMH} \rightarrow \text{CH}_3 + \text{NHNH}_2
 \]

- Barrierless radical-radical recombination reactions

 \[
 \text{NH}_2 + \text{CH}_3\text{NH} \rightarrow \text{MMH} \\
 \text{CH}_3 + \text{NHNH}_2 \rightarrow \text{MMH}
 \]
Potential Energy Surface

- On-the-fly Calculation of Interaction Potential
 - aug-cc-pVTZ: accurate but too computationally demanding → cc-pVDZ and aug-cc-pVDZ were used
 - Reacting fragments have fixed internal geometries

- Orientation-Independent Corrections
 - One-dimensional basis set correction
 - One-dimensional correction for geometric relaxation

\[
V = V_{\text{CASPT2/ADZ}}(R, \Omega; \text{rigid}) \\
+ \left[V_{\text{CASPT2/ADZ}}(R, \Omega^*; \text{rigid}) - V_{\text{CASPT2/ADZ}}(R, \Omega^*; \text{rigid}) \right]
\]

basis set correction from CASPT2/aug-cc-pVTZ

\[
+ \left[V_{\text{CASPT2/ADZ}}(R, \Omega; \text{relaxed}) - V_{\text{CASPT2/ADZ}}(R, \Omega; \text{rigid}) \right]
\]
correction for relaxing of the internal structure
Potential Energy Surface

Potential curves

\[V_{\text{NH}_2+\text{CH}_3\text{NH}} \left(R_{\text{N-N}} = \infty \right) = 0 \]

Relative Energy (kcal/mol)

- \(\text{NH}_2+\text{CH}_3\text{NH} \)
- \(\text{CH}_3+\text{NHNH}_2 \) front side
- \(\text{CH}_3+\text{NHNH}_2 \) back side

\[R_{\text{N-N}} \text{ or } R_{\text{C-N}} \,(\text{au}) \]

Equivalent sides

Front side

Back side
VRC-TST Capture Rates

$k_{1} = 8.34 \times 10^{-10} T^{-0.429} \exp(20.1/T) \text{ cm}^3 \cdot \text{molecule}^{-1} \cdot \text{s}^{-1}$

$k_{2} = 3.99 \times 10^{-12} T^{-0.085} \exp(404.2/T) \text{ cm}^3 \cdot \text{molecule}^{-1} \cdot \text{s}^{-1}$
MMH Dissociation: Theory-Experiment Comparison

- Kerr et al (1963): the first-order rate coefficient for the homogeneous dissociation of NN bond of MMH.
 - Very good agreement with the present theory

- Golden et al (1972): very low pressure reactor → complicated by gas-wall interactions
 - Not appropriate for a direct comparison with the theory

- Eberstein et al (1965): total thermal decomposition rate of MMH
 - Modeled by a mechanism containing 43 species and 160 reactions (Sun and Law 1007)
 - Sensitivity analysis identified two qualitatively important reaction channels:
 \[
 \text{CH}_3\text{NNH}_2 + \text{CH}_3 \rightarrow \text{CH}_3\text{NNH}_2 + \text{CH}_4 \\
 \text{CH}_3\text{NNH}_2 \rightarrow \text{CH}_3\text{NNH} + \text{H}
 \]
 - Disagreement with the theory might be due to the absence of the two reaction channels:
Allyl + HO2
Allyloxy Decomposition
Allyloxy Decomposition