Pressure Dependent Kinetics: Single Well Reactions

Simple Models
- Lindemann-Hinshelwood
- RRKM Theory
- Modified Strong Collider

The Master Equation
- 1-dimensional (E)
- 2d Master Equation (E,J)
- Energy Transfer
- Troe Fitting
- Product Channels \(\text{CH}_3 + \text{OH} \)

Recombination Kinetics

Recombination is a Multistep Process - not single elementary step

\[A + B \rightarrow AB(E) \quad k_f(E) \quad [k(T) = \int k(E) P(E)] \]

But, \(E \) is above dissociation threshold so \(AB \) just reassociates

\[AB(E) \rightarrow A + B \quad k_d(E) \]

Need some process to take away energy and stabilize \(AB \)

Collisions with bath gas \(M \) (or photon emission)

\[AB(E) + M \rightarrow AB(E') + M' \quad k_c \times P(E \rightarrow E') \]

Effective rate constant is some mix of \(k_f(E), k_d(E), k_c, \) and \(P(E \rightarrow E') \)

Dissociation is related to recombination through equilibrium constant
Simple Models Lindemann-Hinshelwood

Assume every collision leads to stabilization
Treat association and dissociation on canonical level

\[A + B \rightarrow AB^* \quad k_f(T) \]
\[AB^* \rightarrow A + B \quad k_d(T) \]
\[AB^* + M \rightarrow AB + M' \quad k_c \]

Steady state for \([AB^*]\) =>

\[\frac{d[AB]}{dt} = k_{eff} [A] [B] \]

\[k_{eff} = k_f k_c [M] / (k_d + k_c [M]) = k_f P_{stabilization} \]

High Pressure limit ([M] → ∞)

\[k_{eff} = k_f \]

Low Pressure limit ([M] → 0)

\[k_{eff} = k_f k_c / k_d \]

Not accurate but good for qualitative thought
Simple Models RRKM Theory

Treat energy dependence of association and dissociation rate constants $k_f(E)$ and $k_d(E)$

\[
\text{k}_{\text{eff}} (T,P) = \int dE \text{k}_{\text{eff}} (E) \ P(E) = \int dE \text{k}_f(E) \ P(E) \ P_{\text{stabilization}} (E,P)
\]

Use transition state theory with quantum state counting to evaluate k_f, k_d

\[
k_{\text{eff}} = \int dE \frac{N^\pm (E)}{h\rho_{\text{react}}(E)} \frac{\rho_{\text{react}}(E) \exp(-\beta E)}{Q_A Q_B} \frac{k_c [M]}{k_d (E) + k_c [M]}
\]

\[
k_{\text{eff}} = \frac{1}{hQ_A Q_B} \int dEN^\pm (E) \exp(-\beta E) \frac{k_c [M]}{k_d (E) + k_c [M]}
\]

Consider High Pressure Limit; $[M] \rightarrow \infty$

\[
k_{\text{eff}}^\infty = \frac{1}{hQ_A Q_B} \int dEN^\pm (E) \exp(-\beta E) = \frac{k_B T}{hQ_A Q_B} \int dE \rho^\pm (E) \exp(-\beta E)
\]

\[
k_{\text{eff}}^\infty = \frac{k_B T}{h} \frac{Q^\pm}{Q_A Q_B}
\]
Simple Models

Assume only a fraction β_c of collisions lead to stabilization

$$k_{\text{eff}} = \frac{1}{hQ_A Q_B} \int dE N^\pm(E) \exp(-\beta E) \frac{\beta_c k_c [M]}{k_d(E) + \beta_c k_c [M]}$$

Consider low pressure limit; $[M] \rightarrow 0$

$$k_{\text{eff}}^0 = \frac{1}{hQ_A Q_B} \int dE N^\pm(E) \exp(-\beta E) \frac{\beta_c k_c [M]}{k_d(E)}$$

$$k_{\text{eff}}^0 = \frac{\beta_c k_c [M]}{Q_A Q_B} \int_0^\infty dE \rho_{AB}(E) \exp(-\beta E)$$

k_{eff}^0 does not depend on transition state! Only the threshold E matters

β_c is a fitting parameter - typical value ~ 0.1
Master Equation

Consider \(n(E,t) \) = time-dependent population of AB molecule at energy \(E \)

Master equation \hspace{1cm} Irreversible Formulation

\[
\frac{dn(E)}{dt} = k_c [M] \int dE' \left[P(E,E')n(E',t) - P(E',E)n(E,t) \right] - k_d(E)n(E,t)
\]

Replace \(n(E,t) \) with normalized population \(x(E,t) = \frac{n(E,t)}{\int dE n(E,t)} \)

Steady state for \(x \) =>

\[-k(T,p)x(E) = k_c [M] \int dE' P(E,E')x(E') - k_c [M]x(E) - k_d(E)x(E)\]

Master equation \hspace{1cm} Reversible Formulation

\[
\frac{dn(E)}{dt} = k_c [M] \int dE' \left[P(E,E')n(E',t) - P(E',E)n(E,t) \right] - k_d(E)n(E,t) + \]

\[
k_f(E) \frac{\rho_{\text{reac tan}}(E) \exp(-\beta E)}{Q_A Q_B} n_A n_B
\]
Master Equation Symmetrized Form

\[f^2(E) = \rho(E) \exp(-\beta E) = F(E)Q(T) \]
\[y(E) = x(E)/f(E) \]

Discretize master equation

\[\frac{dy}{dt} = G' y \]
\[G'_{ij} = k_c [M] P(E_i, E_j) \frac{f(E_j)}{f(E_i)} \delta E - \left[1 + \frac{k_d(E)}{k_c[M]} \right] \delta_{ij} \]

Diagonalize

\[|y(t)\rangle = \sum_{j=1}^{N} \exp(\xi_j t) |g_j\rangle \langle g_j | y(0) \rangle \]

Eigenvalues are all negative
One with smallest magnitude defines the rate coefficient
\[k(T,p) = -\xi_1 \]
Others are related to rate of energy transfer - form continuum
Master Equation Problems at Low T

numerical difficulties with diagonalization due to large dynamic range

Various Solutions

1. Integrate in time
2. Quadruple Precision
3. Reformulate with sink for complex \Rightarrow Matrix inversion
Master Equation Problems at high T

Dissociation occurs on same time scale as energy relaxation

Nonequilibrium factor f_{ne}

$$f_{ne} = \frac{\left(\int dE c(E)\right)^2}{\left(\int dE \frac{c^2(E)}{F(E)}\right)^2}$$

$c(E) = \text{steady state distribution}$

Deviation of f_{ne} from unity indicates how much dissociation happens before relaxation

Detailed balance is still satisfied for fraction that happens after relaxation
Boltzmann Distributions

CH_4

Figure 8. Relative values of $f(E; T)$. The functions are normalized so that the peak is always unity.
Non-equilibrium factors

Temperature (K)

f_{ne} (dimensionless)

- i-C_4 H_3
- C_2 H_3
- C_2 H_5
- n-C_4 H_3 (vinoxy)
- acetyl
Master Equation 2-Dimensional

Total Angular Momentum J - conserved between collisions

Master equation in E and J

\[n(E,J,t) \quad \text{or} \quad x(E,J,t) \]
\[P(E,J,E',J') \]
\[k(E,J) \]

Numerical solution timeconsuming

Need more information on energy transfer than we have
Approximate Reduction from 2D to 1D

E model

\[P(E,J,E',J') = P(E,E') \varphi(E,J) \]

Rotational energy transfer like vibrational J distribution given by phase space volume

\[\varphi(E,J) = (2J+1) \frac{\rho(E,J)}{\rho(E)} \]

\[\rho(E) = \sum_J (2J+1) \rho(E,J) \]

\[k(E) = \frac{\sum_J (2J+1) N^\pm(E,J)}{h\rho(E)} \]

Use \(k(E) \) and \(P(E,E') \) in 1D Master Eqn

Does not resolve J dependent thresholds

All rotational degrees of freedom are active

Incorrect low pressure limit
E, J model

like E model, but treat $k(E, J)$ properly

$$k(E) = \frac{\sum_J k(E, J) \ y(E, J)}{\sum_J y(E, J)}$$

$$y(E, J) = \frac{\phi(E, J)}{k_c[M] + k(E, J)}$$

$$x(E) = \sum_J x(E, J)$$

$$x(E, J) = \frac{k_c[M]\phi(E, J)}{Z + k(E, J)} \int dE' P(E, E') x(E')$$

Proper treatment of J dependent thresholds
Proper zero-pressure limit
Proper high-pressure limit
Consistent with detailed balance
2D Master Equation \(\varepsilon, J \) Model

\(\varepsilon, J \) model

Active energy - does not include overall rotation

\[
\varepsilon = E - E_J
\]

\[
E_J = BJ(J+1)
\]

\[
P(\varepsilon, J, \varepsilon', J') = P(\varepsilon, \varepsilon') \Phi(\varepsilon, J)
\]

\[
\Phi(\varepsilon, J) = (2J+1)\rho(\varepsilon, J)\exp(-\beta E_J)/\sum_J(2J+1)\rho(\varepsilon, J)\exp(-\beta E_J)
\]

\[
\rho(\varepsilon, J) = \text{density of states for active degrees of freedom}
\]

Thermally equilibrated J distribution

Satisfies Detailed balance
Steady State Distribution

CH_4

E model

E, J model
Low Pressure Limit \(\text{CH}_4 \)

Figure 1. High-temperature rate coefficients. The master-equation calculations were done with \(\langle \Delta E_d \rangle = 410 \text{ cm}^{-1} \), independent of \(T \), for the \(E,J \) and \(E \) models. A constant value of \(\langle \Delta \epsilon_d \rangle = 35 \text{ cm}^{-1} \) was assumed for the \(\epsilon,J \) ME calculations.
Low Pressure Limit

\[H + C_2H_2 + He \rightarrow C_2H_3 + He \]

Graph showing the variation of the reaction rate constant \(k_0 \) (cm^6/molecule^2-s) with temperature (T(K)) for different models:
- 1-D ME (E model)
- 2-D ME (E,J model)
- E,J model (no tunneling)
Reduced Falloff Curves

Reduced Falloff h+c2h2 300 K

- low-p limit
- high-p limit
- 1-d ME
- 2-d ME
- barrierless test case
- Lindemann

Reduced Falloff c2h3-he 1500K

- low-p limit
- high-p limit
- 1-d ME
- 2-d ME
- barrierless test case
- Lindemann
Collision Rates

Hard Sphere

\[k_c^{HS} = \sqrt{\frac{8kBT}{\pi \mu \pi d^2}} \]

Lennard-Jones

\[k_c^{LJ} = k_c^{HS} \Omega_{2,2}^* \]

\[\Omega_{2,2}^* = \frac{1.16145}{\left(T^*\right)^{0.14874}} + \frac{0.52487}{\exp(0.7732T^*)} + \frac{2.16178}{\exp(2.437887T^*)} \]

Underestimates collision rate
Correct with larger average energy transferred

Dipole Corrections

\[T^* = \frac{k_B T}{\varepsilon} \]
Energy Transfer Forms

Exponential Down

\[P(E, E') = \frac{1}{C_N(E')} \exp\left(-\frac{\Delta E}{\alpha}\right) \]

\[\alpha = \alpha_0 \left(\frac{T}{298}\right)^n \]
\[\alpha_0 \sim 50-400 \text{ cm}^{-1} \]
\[n \sim 0.85 \]
Fit to experiment

Gaussian Down

\[P(E, E') = \frac{1}{C_N(E')} \exp\left[-\left(\frac{\Delta E}{\alpha}\right)^2\right] \]

Double Exponential Down

\[P(E, E') = \frac{1}{C_N(E')} \left[(1 - f) \exp\left(-\frac{\Delta E}{\alpha_1}\right) + f \exp\left(-\frac{\Delta E}{\alpha_2}\right) \right] \]
Energy Transfer Moments

Average Energy Transferred

\[\langle \Delta E \rangle = \int dE (E' - E) P(E, E') \]

Average Downwards Energy Transferred

\[\langle \Delta E_d \rangle = \int_0^{E'} dE' (E' - E) P(E, E') / \int_0^{E'} dE' P(E, E') \]

\[\langle \Delta E_d \rangle \approx \alpha \quad \text{for exponential down} \]

Average squared energy transfer

\[\langle \Delta E^2 \rangle = \int dE (E - E')^2 P(E, E') \]
Fits to Experiment $H + C_2H_2$ Addition

$h + c_2h_2 \ 298K$

10^{-12}

$k(\text{cm}^3/\text{molecule-sec})$

10^{-13}

10^{-14}

$1, 10, 100, 1000$

pressure(torr)

$1-d \ ME$

$2-d \ ME$

- Payne & Stief (1976)
Fits to Experiment \(\text{C}_2\text{H}_3 \) Dissociation

\[
\begin{align*}
\text{Fig. 5} \ & \text{Comparison of the theoretical results for } k_{-1}(T,p) \\
& \quad \text{(C}_2\text{H}_3 \rightarrow \text{C}_2\text{H}_2 + \text{H}) \text{ with the experiments of Knyazev and Slagle.}^{21} \\
& \quad \text{The units of } n_{\text{He}} \text{ are molecule cm}^{-3}.
\end{align*}
\]
Fits to Experiment

T dependent ΔE_d

Fig. 8 Values of $\langle \Delta E_d \rangle$ as a function of temperature for several molecules and collision partners.
Energy Transfer from Trajectories

Collisional energy transfer in unimolecular reactions: Direct classical trajectories for CH$_4$=CH$_3$+H in Helium

$\alpha_0=110$ cm$^{-1}$ $n=0.81$

Barker is studying $P(E,J,E',J')$
Troe Fitting

Need to represent $k(T, P)$ for Global Models
Standard is Troe Fitting

$$k(T, p) = \frac{k_0[M]k^\infty}{k^\infty + k_0[M]} F$$

$$\log_{10} F = \frac{\log_{10} F_{cent}}{1 + \left[\frac{\log_{10}(p^*) + c}{N - d(\log_{10}(p^*) + c)} \right]^2}$$

$$p^* = k_0[M]/k^\infty \quad d = 0.14$$

$$c = -0.4 - 0.67\log_{10} F_{cent} \quad N = 0.75 - 1.27\log_{10} F_{cent}$$

Fit k_0 & k^∞ to modified Arrhenius

$$k_0 = A_0 T^{n_0} \exp(-E_0 / T)$$

Fit F_{cent} to:

$$F_{cent} = (1 - a)\exp(-T / T^{**}) + a\exp(-T / T^*) + \exp(-T^{**} / T)$$
Troe Fitting Problems

Limited Accuracy
Typical Errors ~ 10 to 20%

Improved Fitting Formulas

Still problems for tunneling

Multiple channels - actual P dependence is dramatically different from Troe Form

Use Log Interpolation

\[\log k = \log k_i + (\log k_{i+1} - \log k_i) \left(\frac{\log p - \log p_i}{\log p_{i+1} - \log p_i} \right) \]

Part of Current ChemKin
$\text{CH}_3 + \text{OH}$

Potential Energy Surface
<table>
<thead>
<tr>
<th>Stationary point</th>
<th>ATcT(^a)</th>
<th>Present(^b)</th>
<th>Ref. 29(^c)</th>
<th>Ref. 51(^d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH(_3) + OH</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>CH(_3)OH</td>
<td>−90.25 ± 0.05</td>
<td>−90.4</td>
<td>−91.9</td>
<td>−87.6</td>
</tr>
<tr>
<td>CH(_3)OH(^e)</td>
<td>−89.8</td>
<td>−87.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^1)CH(_2) + H(_2)O</td>
<td>0.58 ± 0.07</td>
<td>0.03</td>
<td>−1.6</td>
<td>0.5</td>
</tr>
<tr>
<td>H(_2) + H(_2)CO</td>
<td>−69.92 ± 0.06</td>
<td>−70.0</td>
<td>−73.8</td>
<td>−68.2</td>
</tr>
<tr>
<td>H(_2) + cis-HCOH</td>
<td>−13.13 ± 0.32</td>
<td>−13.8</td>
<td>−17.1</td>
<td>−12.3</td>
</tr>
<tr>
<td>H(_2) + trans-HCOH</td>
<td>−17.77 ± 0.29</td>
<td>−18.0</td>
<td>−21.4</td>
<td>−16.4</td>
</tr>
<tr>
<td>H + CH(_2)OH</td>
<td>4.30 ± 0.09</td>
<td>4.6</td>
<td>4.3</td>
<td>7.5</td>
</tr>
<tr>
<td>H + CH(_3)O</td>
<td>13.75 ± 0.10</td>
<td>13.7</td>
<td>13.0</td>
<td>15.6</td>
</tr>
<tr>
<td>(^3)CH(_2) + H(_2)O</td>
<td>−8.42 ± 0.06</td>
<td>−8.7</td>
<td>−11.2</td>
<td></td>
</tr>
<tr>
<td>CH(_2)···H(_2)O (vdW)</td>
<td>−8.5</td>
<td>−9.2</td>
<td>−4.8</td>
<td></td>
</tr>
<tr>
<td>([^1)CH(_2) + H(_2)O ⇔ CH(_3)OH]^\dagger) (SP1)</td>
<td>−7.3</td>
<td>−7.8</td>
<td>−4.6</td>
<td></td>
</tr>
<tr>
<td>([H(_2) + H(_2)CO ⇔ CH(_3)OH]^\dagger) (SP2)</td>
<td>−0.3</td>
<td>−1.3</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>([H(_2) + cis-HCOH ⇔ CH(_3)OH]^\dagger) (SP3)</td>
<td>−2.2</td>
<td>−3.8</td>
<td>−0.6</td>
<td></td>
</tr>
<tr>
<td>([H(_2) + trans-HCOH ⇔ CH(_3)OH]^\dagger) (SP4)</td>
<td>−4.8</td>
<td>−6.4</td>
<td>−2.2</td>
<td></td>
</tr>
<tr>
<td>([CH(_3) + OH ⇔ (^3)CH(_2) + H(_2)O]^\dagger) (SP5)</td>
<td>5.6</td>
<td>6.7</td>
<td>15.8</td>
<td></td>
</tr>
</tbody>
</table>
Reactions with Products: \(\text{CH}_3 + \text{OH} \)

Experiment:

Triangles - De Avillez Pereira, Baulch, Pilling, Robertson, and Zeng, 1997

Circles - Deters, Otting, Wagner, Temps, László, Dóbé, Bérces, 1998

Theory: Master Equations

Dotted - De Avillez Pereira et al.

Solid & Dashed - Present Work

\[\langle \Delta E_d \rangle = 133 \left(\frac{T}{298} \right)^{0.8} \text{ cm}^{-1} \]

\[\pm 25\% \]
CH$_3$ + OH: Higher T and P ~1 atm

Shock tube studies

- 1991, Bott and Cohen (1 atm)
- 2004, Krasnoperov and Michael (100–1100 torr)
- 2006, Srinivasan, Su, and Michael (200–750 torr)
Methanol decomposition: Low pressure limit

Experimental
- 2004, Krasnoperov and Michael
- 2006, Srinivasan, Su, and Michael
- 1981–2000, Many others
- k independent of P (100–1000 torr)
- 60–90% $\text{CH}_3 + \text{OH}$

Previous theory
- 2001, Xia, Zhu, Lin, and Mebel (shown at 1 atm)
- Falloff below 1 atm
- ~33% $\text{CH}_3 + \text{OH}$
 ~52% $\text{CH}_2 + \text{H}_2\text{O}$
 ~15% $\text{H}_2 + \text{HCOH}$

Present theory
- Low-P limit at 1 atm
- ~75% $\text{CH}_3 + \text{OH}$
 ~20% $\text{CH}_2 + \text{H}_2\text{O}$
 < 5% $\text{H}_2 + \text{HCOH}$
Methanol decomposition: Product branching

![Graph showing the relationship between temperature and $P_{\text{CH}_3+\text{OH}}$ at different torr pressures (760 Torr and 200 Torr). The graph includes data from Xia et al. (2001) for 760 Torr.]
Secondary kinetics of methanol decomposition

Well characterized

\[\text{OH} + \text{OH} \rightarrow \text{O} + \text{H}_2\text{O} \]

\[\text{H} + \text{OH} \rightarrow \text{O} + \text{H}_2 \]

Not well characterized

\[\text{^3CH}_2 + \text{OH} \rightarrow \text{CH}_2\text{O} + \text{H} \]

Ambiguous experiments

\[\text{^3CH}_2 + \text{^3CH}_2 \rightarrow \text{C}_2\text{H}_2 + 2\text{H} \]

\[\text{CH}_3 + \text{^3CH}_2 \rightarrow \text{C}_2\text{H}_4 + \text{H} \]

Secondary kinetics: OH Time Traces

Michael et al.

Good agreement at long times using our predicted rates for

$^{3}\text{CH}_2 + \text{OH}$
$^{3}\text{CH}_2 + ^3\text{CH}_2$
$\text{CH}_3 + ^3\text{CH}_2$
$\text{CH}_3 + \text{OH}$
Multiple-Well Multiple-Channel
Time Dependent Master Equation

1. The Kinetic Model
2. Collisionless Limit
3. CH + N₂
4. Time Dependent Populations
5. Kinetic Phenomenology
6. C₂H₅ + O₂
7. Reduction in Species at High Pressure
8. C₃H₃ + H
9. Radical Oxidation
10. C₃H₃+C₃H₃
The Kinetic Model

Energy Transfer
- Bath Gas B: $[B] >> [M] >> [R]$.
- Z; Lennard Jones
- $P(E',E)$; Exponential Down

Phenomenology
- $k R + M \leftrightarrow P$
- $k R + M \leftrightarrow W_1$
- $k R + M \leftrightarrow W_2$
- $k W_1 \leftrightarrow W_2$
- $k W_1 \leftrightarrow P$
- $k W_2 \leftrightarrow P$

RRKRM Theory
- k_{d1}
- k_{a1}
- k_{12}
- k_{21}
- k_{p1}
- k_{p2}
Multiple-Well Multiple-Channel Master Equation

\[
\frac{dn_i(E)}{dt} = k_c n_B \int dE' P_i(E,E')n_i(E') - k_c n_B n_i(E) - k_{d_i}(E)n_i(E) - \sum_{p=1}^{N_p} k_{p_i}(E)n_i(E) - \\
\sum_{j \neq i}^M k_{^{isom}}(E)n_i(E) + \sum_{j \neq i}^M k_{^{isom}}(E)n_j(E) + K_{eq_i} k_{d_i}(E)F_i(E)n_R n_m
\]

\[
\frac{dn_R}{dt} = \sum_{i=1}^M \int dE k_{d_i}(E)n_i(E) - n_R n_m \sum_{i=1}^M K_{eq_i} \int dE k_{d_i}(E)F_i(E)
\]

M Wells \quad N_p \text{ Products} \\
M+1 \text{ Chemical Species} \\
n_B \gg n_m \gg n_R \quad B=\text{Bath}, \; m=\text{Molecule}, \; R=\text{Radical} \\
Linear Master Equation
Collisionless Limit

Consider \(Z \to 0 \)

\[
\frac{d}{dt} \left| n(E,J) \right\rangle = -K(E,J) \left| n(E,J) \right\rangle + n_R n_m |b(E,J)\rangle \rho_{Rm}(E,J) \exp(-\beta E) / Q_{Rm}
\]

\[
\frac{d}{dt} \left| P(E,J) \right\rangle = D(E,J) \left| n(E,J) \right\rangle
\]

Steady State for \(n(E,J) \)

\[
\frac{d}{dt} \left| P(E,J) \right\rangle = D(E,J)K^{-1}(E,J) \left| b(E,J) \right\rangle n_R n_m \rho_{Rm}(E,J) \exp(-\beta E) / Q_{Rm}(T)
\]

\[
\left| k_0(T) \right\rangle = \frac{1}{Q_{Rm}(T)} \sum J (2J + 1) \int dED(E,J)K^{-1}(E,J) \left| b(E,J) \right\rangle \rho_{Rm}(E,J) \exp(-\beta E)
\]

Flux coefficients
CH + N₂ Prompt NO

• 1971 Fenimore \(^2\)CH + N₂ → HCN + \(^4\)N
• 1991 Dean, Hanson & Bowman -- shock tube measurements of rate for \(^2\)CH + N₂ → Products
• 1991 Manaa & Yarkony -- located minimum crossing point for doublet to quartet transition
• 1996 Miller & Walch -- found maximum on spin forbidden path corresponds to dissociation of the quartet complex; not the doublet-quartet crossing; presume rapid ISC and fit experimental data
• 1999 Qui, Morokuma, Bowman & Klippenstein -- predicted spin-forbidden reaction to be less than observed rate by at least 10²
• 2000 Moskaleva, Xia & Lin -- predicted new spin allowed mechanism,
 \(^2\)CH + N₂ → HNCN → \(^2\)H + \(^3\)NCN
• 2007 Szpunar, Faulhaber, Kautzman, Crider & Neumark -- observed the photodissociation of DNCN to CD+N₂ and D+NCN with 1:1 branching ratio
Recent Modeling

• Williams, Fleming
 NO severely underpredicted in CH$_4$ and C$_3$H$_8$ flames

• El Bakali, Pillier, Desgroux, Lefort, Gasnot, Pauwels, da Costa,
 Fuel 85, 896, 2006
 Increasing CH + N$_2$ rate by 1-2 orders of magnitude over the
 1000 to 1500 K range yields good predictions for NO in natural
 gas flames

• Sutton, Williams, Fleming,
 Comb. Flame, 2008, in press.
 Improved modeling for CH4/O2/N2 flames with rates of El
 Bakali et al.
CAS+1+2+QC/aug-cc-pvtz

Contour Increments: Thick- 5 kcal/mol, Thin- 1 kcal/mol
The diagram shows a graph with the y-axis labeled as
k (cm3 molecule$^{-1}$ s$^{-1}$) and the x-axis labeled as $1000/T$ (1/K). The graph plots the rate constant (k) against the reciprocal of temperature ($1000/T$). The data points for different reactions are represented by various lines and markers:

- H+NCN
- TS$_1$
- TS$_3$

The lines show the decrease in rate constant as the temperature decreases.
Time-Dependent Populations

- **Discretize Energy Levels**
- **Transition Matrix; Renormalize** \rightarrow real, symmetric; G

- \[\frac{d}{dt} \left| w(t) \right\rangle = G \left| w(t) \right\rangle \quad y_i(E,t) = x_i(E,t) / f_i(E) \]

- \[\left| w(t) \right\rangle = \left[y_i(E_{0_1}), \ldots, y_i(E_{0_l}), \ldots, y_i(E_{0_1}), \ldots, y_i(E_{max}), \ldots, \left(\frac{n_m}{QR_m \delta E} \right)^{1/2}, X_R, \ldots \right]^T \]

- **Diagonalize**

- \[\left| w(t) \right\rangle = \sum_{j=1}^{N_{I+...+N_{M+1}}} e^{\lambda_j t} \left| g_j \right\rangle \left\langle g_j \right| w(0) \]
Kinetic Phenomenology
Experimental Viewpoint

• Find regimes of single exponential decay (λ)
 – λ implies total rate coefficient
 – Eigenvector corresponding to λ implies branching
 – Branching implies individual rate coefficient (k_{tot})

• When is decay close enough to single exponential?
 – Suppose 2nd eigenvector contributes to only 1% of the initial decay but that $\lambda_2/\lambda_1 = 100$
 – Rate coefficient will differ by a factor of two from apparent exponential decay
 – Branching similarly incorrect

• Difficult to find single exponential decay regimes in multiple well situations
Eigenvalues \(\text{C}_3\text{H}_3 + \text{C}_3\text{H}_3 \)
A Simple Solution: Separation of Timescales

• M+1 modes corresponding to chemical change have least negative eigenvalues.

• λ’s for chemical modes well separated from remaining λ’s for energy transfer

• After energy relaxation can treat populations as

\[w_\ell(t) = \sum_{j=1}^{M+1} e^{\lambda_j t} g_{j\ell} \langle g_j | w_A(0) \rangle \]

\[\frac{dX_i}{dt} = -\sum_{j=1}^{M+1} \lambda_j e^{\lambda_j t} \Delta X^{(A)}_{ij}; \quad \Delta X^{(A)}_{ij} = -\langle g_j | w_A(0) \rangle \delta E \sum_{\ell \in i} f_i(E_\ell) g_{j\ell} \]

• Eigenpairs \((\lambda_i, \Delta X_i)\) correspond to Normal modes of chemical relaxation
Method 1 \(t=0 \) Limit and Start in Well A

- Phenomenology
 \[\frac{dX_A}{dt}(0) = -k_{TA} X_A(0) \]

- Master Equation
 \[\frac{dX_A}{dt}(0) = -\sum_{j=1}^{M+1} \lambda_j \Delta X_{Aj} \]
 \[k_{TA} = \sum_{j=1}^{M+1} \lambda_j \Delta X_{Aj} \]

- Similarly, consider \(dX_i/dt \) implies
 \[k_{Ai} = -\sum_{j=1}^{M+1} \lambda_j \Delta X_{ij} \]

- \(k_{AR} = -\sum_{j=1}^{M+1} \lambda_j \Delta X_{Rj} \); \(\Delta X_{Rj} = -\left(\frac{Q_{Rm} \delta E}{n_m} \right)^{1/2} g_{j\ell} \left\langle g_j \left| w_A(0) \right\rangle \right. \]

- \(k_{Ap} = -\sum_{j=1}^{M+1} \lambda_j \Delta X_{pj} \); \(\left[\Delta X_R + \Delta X_p + \sum_{i=1}^{M} \Delta X_i \right]_j = 0 \)
Method 2

Long time limit

- \(X_i(t) = \sum_{j=0}^{M+1} a_{ij} e^{\lambda_j t} \equiv \sum_{j=0}^{M+1} a_{ij} v_j \)

\[|X\rangle = A |v\rangle \quad |v\rangle = B |X\rangle \]

- \(\frac{dX_i}{dt} = \sum_{j=0}^{M+1} \sum_{\ell=1}^{M+2} \lambda_j a_{ij} b_{j\ell} X_\ell \)

- \(\frac{dX_i}{dt} = \sum_{\ell \neq i} k_{\ell i} X_\ell - \sum_{\ell \neq i} k_{i\ell} X_i \)

- \(k_{\ell i} = \sum_{j=0}^{M+1} \lambda_j a_{ij} b_{j\ell} \quad \ell \neq i \)
$C_2H_5 + O_2$ Potential Energy Surface
$C_2H_5 + O_2$

Eigenvalues

![Graph](image-url)

- λ_3/n_m
- λ_2/n_m
- λ_1/n_m

$C_2H_5 + O_2 \leftrightarrow C_2H_5O_2$

$C_2H_5O_2 \rightarrow C_2H + HO_2$

k_{exp}

$k(\text{cm}^3/\text{molecule-s})$

$1/T(K)$
$\text{C}_2\text{H}_5 + \text{O}_2$

T Dependent Rate Coefficients
$\text{C}_2\text{H}_5 + \text{O}_2$ P Dependent Rate Coefficients
$C_2H_5O_2 \rightarrow C_2H_4 + HO_2$ P Dependent Rate Coefficients

![Graph showing the rate coefficients for the reaction $C_2H_5O_2 \rightarrow C_2H_4 + HO_2$ as a function of pressure (P) at different temperatures (600 K, 700 K, 850 K, 1000 K, 1500 K).]
\(\text{C}_3\text{H}_7 + \text{O}_2 \) \hspace{1cm} \text{Formally Direct Pathways; QOOH}
C₃H₄ Potential Energy Surface

\[\text{Energy (kcal/mole)} \]

\[\text{(I)} \quad \text{H} \quad \text{H} \quad \text{H} \quad \text{H} \]
\[\text{(II)} \quad \text{H} \quad \text{C} = \text{C} \quad \text{H} \quad \text{H} \quad \text{H} \]
\[\text{(III)} \quad \text{H} \quad \text{C} - \text{C} = \text{C} \quad \text{H} \quad \text{H} \]

\[\text{1C₃H₂+H₂} \]
\[\text{1H₂CCC} \quad \text{+H₂} \]
\[\text{3C₃H₂+H₂} \]
\[\text{c-C₃H₂+H₂} \]
C_3H_4 eigenvalues

Temperature (K)

- λ_1 (I+II+III+R \rightarrow P)
- λ_2 (I \leftrightarrow II)
- λ_3 (I \leftrightarrow III)
- λ_4 (R \leftrightarrow I)
- λ_5

IERE continuum
C_3H_4 Rate Coefficients

$T=1300K$

$C_3H_4 a \rightarrow C_3H_4 p$

$C_3H_4 a \rightarrow c-C_3H_4$

$k (1/s)$ vs. pressure (Torr)
$\text{C}_3\text{H}_3 + \text{C}_3\text{H}_3$ Eigenvalues

[Graph showing eigenvalues as a function of temperature ($T(K)$) and reaction rates (λ)]
C₃H₃ + C₃H₃ Rate Coefficients
$C_3H_3 + C_3H_3$ Isomerization Rate Coefficients

1,5 hexadiyne isomerization

Miller-Melius potential

theory

Stein, et al. (1990)

Huntsman and Wristers (1967)

1,2,4,5 hexatetraene isomerization

Miller-Melius potential

50 Torr

1 atm

50 torr (HL1)

1 atm(HL1)

theory

HL1

I→II and II→III barriers

Hopf (1971)
\[\text{C}_3\text{H}_3 + \text{C}_3\text{H}_3 \]

Product Branching in 1,5-Hexadiyne Pyrolysis
$\text{C}_3\text{H}_3 + \text{C}_3\text{H}_3$
Product Branching
$\text{C}_3\text{H}_3 + \text{C}_3\text{H}_3$ Product Branching
$C_3H_3 + C_3H_3$ Rate Coefficients

![Graphs showing rate coefficients for $C_3H_3 + C_3H_3$ reactions at 10 atm pressures.](image)
C_6H_6 Dissociation Rates

![Graphs showing dissociation rates for fulvene and benzene at 10 atm pressure.](image)
Master Equation Codes

Eigenvalue Eigenvector Methods

VariFlex
Klippenstein
Research Code - Not usable without personal training

MESMER
Pilling (Leeds)
http://sourceforge.net/projects/mesmer/

Stochastic Master Equation Solvers

Experimental Perspective only

Multiwell
Barker (Michigan)
http://esse.engin.umich.edu/multiwell/MultiWell/MultiWell%20Home/MultiWell%20Home.html

Vereecken and Peeters (Leuven)

Steady State Solvers

ChemRate
Tsang (NIST)
http://www.mokrushin.com/ChemRate/chemrate.html