Kinetic and Transport Processes in Flames

C. K. Law
Princeton University

Outline of Presentation

1. NTC-affected ignition in nonpremixed counterflow
2. Theory on turbulent flame propagation
3. Synergistic combustion of fuel droplets of ethanol, diesel and biodiesel blends
NTC-Affected Ignition in Nonpremixed Counterflow
Motivation

• NTC behavior:
 • Extensively observed in homogeneous systems
 • Inferred from detailed computational studies of transport-affected inhomogeneous flows
 • Need clear theoretical/experimental manifestation of global ignition & combustion behavior in response to flow straining and nonuniformity (e.g. counterflow)

• Search and identify NTC behavior for nonpremixed counterflow at:
 • low strain rates
 • high pressures
System Specifications

- Nonpremixed diluted n-heptane against heated air
- LLNL detailed mechanism of 561 species and 2539 reactions reduced to a skeletal mechanism of 88 species and 387 reactions using directed relation graph (DRG).
- Qualitatively similar results also obtained for DME
NTC Response Observed at Low Strain Rates (1 atm)
Prominent NTC Response at Elevated Pressures (100/s)
Essential Role of Heat Release

- Both primary and secondary turning points are eliminated by suppressing heat release
Summary of NTC-Affected Behavior

- NTC behavior manifested for flows at low strain rates and/or elevated pressures
- NTC response constitutes a separate (weak) flame system, with distinct (secondary) S-curve ignition-extinction states grafted onto the lower branch of the primary S-curve.
- At lower pressures ignition occurs in two stages with increasing temperature
- At sufficiently high pressures ignition occurs in a single, NTC-control stage
Studies on Turbulent Flame Propagation

- Modification of regime diagram
- Theory of turbulent flame speeds
Role of Darrieus-Landau Instability in Turbulent Flame Propagation

- The classical regime diagram does not account for the possible presence of the hydrodynamic (Darrieus-Landau) cells, which increase surface area and hence flame propagation speed.
- DL instability promoted with decreasing flame thickness at elevated pressures
- DL instability and flame wrinkling can be inhibited by
 - Finite flame thickness and structure
 - Finite growth rate, hence depending on turbulence intensity
Modified Regime Diagram
In Search of Relation for Turbulent Flame Speed

It is of interest to seek a relation for the turbulent flame speed S_T in terms of turbulence and laminar flame parameters, like:

$$S_T / S_L = f \left(U_{rms}/S_L ; \lambda_f / \delta_L \right)$$

Previous theories do not account for effects due to flame structure and instability.

Experiments
{Abdel-Gayed et al., PRSL A, 1987; Aldredge et al., C&F, 1998; Kobayashi et al., PCI, 1998; 2000; 2002, Gulder C&F 2000}

Theories/models
{Clavin&Williams, JFM, 1979; Anand and Pope, PCI 1987; Yakhot, CST, 1988; Kerstein & Ashurst, PRL, 1992; Pocheau, PRE, 1994, Peters, JFM, 1999}
Elements of Formulation

- Effective cutoff such that effective DL flame speed effect could be superimposed on turbulent flame speed \((S_{T,0})\) obtained for no instability

- \(S_{T,0}/S_L\) from spectral closure of G equation

- Main contribution of \(S_{T,0}/S_L\) comes from intermediate scales

- Simplifying:
 \[
 \left(\frac{S_{T,0}}{S_L} \right)^2 \sim \left(\frac{U_{rms}}{S_L} \right) \left(\frac{\lambda_I}{\delta_L} \right)
 \]

- Nonlinearity is inherent that causes bending
Synergistic Combustion of Droplets of Ethanol, Diesel and Biodiesel Blends
Synergy Through Blending (1/2)

- Diesel is sooty, mostly undesirable but small amount is needed for sealing
- Diesel is still economically favored
- Both ethanol and biodiesel are bio-fuels
- Both ethanol and biodiesel are minimally sooty
- Ethanol is more volatile than diesel, could affect ignition
- Biodiesel is less volatile than diesel, could affect atomization and mixture homogeneity
Synergy through Blending (2/2)

- Droplet gasification sequence affected by
 - Volatility differentials
 - Liquid-phase diffusional trapping
- Consequences: Gasification sequence largely controlled by volatility differentials (ethanol → diesel → biodiesel), but with some volatiles trapped by diffusional resistance
- Mixing strategy
 - Sequential gasification reduces soot formation from the early and latter parts of droplet life time from ethanol and biodiesel gasification
 - Trapping of ethanol in high-boiling-point biodiesel initiates internal homogeneous nucleation, causing instant droplet explosion and hence facilitating gasification
Images of Flame Streaks of Droplet Streams

Diesel → Ethanol

Diesel → Biodiesel

Biodiesel → Ethanol
Work Plan

- NTC-Affected Flame Phenomena
 - Counterflow and stagnation flow ignition experiments on DME and heptane to complement theoretical findings
 - Analyze other ignition phenomena (e.g. spark ignition, jet ignition)
 - Further study of the secondary S-curve

- Turbulent flames
 - Extend theory to spherically expanding flames with DL instability
 - Extensive experimentation with DME, at elevated pressures, up to say 20 atm.
 - Coordinate with DNS/LES simulation efforts of Chen and Pope

- Droplet combustion
 - Optimize synergy
 - Test fuels synthesized by DOE biofuels centers