Flame Chemistry and Diagnostics

High-Temperature Oxidation of (1) \(n \)-Butanol and (2) \(C_4 \)-Hydrocarbons in Low-Pressure Premixed Flames

Nils Hansen, Michael R. Harper, William H. Green
Bin Yang, Hai Wang, Enoch Dames

Sandia National Laboratories
Massachusetts Institute of Technology
Princeton University
University of Southern California

2nd Annual Conference of the CEFRC
Aug 17th-19th, 2011, Princeton, NJ
Outline

- Background and Motivation
- Experimental Details
 - Photoionization Mass Spectrometry
 - Targeted Flame Conditions
- n-Butanol Flame Chemistry
- C₄- Hydrocarbons Flame Chemistry: *iso*-butene as a test case
Background and Motivation

✓ *n*-Butanol

- Several studies have been targeted on a fundamental understanding of its combustion chemistry
- Models are best tested against *in-situ* species measurements in simple (laminar, premixed) burner-stabilized flames. Detailed species profiles will provide a very strict test of the combustion chemistry models.

✓ *C*₄- Hydrocarbons

- *C*₄-hydrocarbons combustion data are still of scarcity except for 1,3-butadiene. Combustions of 1-butene (1-C₄H₈), *n*-butane (C₄H₁₀), *iso*-butene (iC₄H₈), *iso*-butane (iC₄H₁₀) at both fuel-rich and stoichiometry conditions are desired
- In particular, *iso*-butene is an important intermediate of the pyrolysis and oxidation of *iso*-butanol.
Flames are analyzed with molecular beam time-of-flight mass spectrometry.

Photoionization with tunable synchrotron-generated VUV photons allows identification of species:
- by mass
- by ionization energy

Experimental mole fraction profiles are compared with flame model predictions.

Reaction path and sensitivity analysis are performed.
Experimental Details

Targeted \(n-C_4H_9OH \) Flame Conditions

<table>
<thead>
<tr>
<th></th>
<th>Flame 1</th>
<th>Flame 2</th>
<th>Flame 3</th>
<th>Flame Oßwald*</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n-C_4H_9OH)</td>
<td>3.6</td>
<td>3.3</td>
<td>7.2</td>
<td>17.8</td>
</tr>
<tr>
<td>(H_2)</td>
<td>24.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(O_2)</td>
<td>24.1</td>
<td>16.7</td>
<td>42.8</td>
<td>57.2</td>
</tr>
<tr>
<td>(Ar)</td>
<td>48.2</td>
<td>80.0</td>
<td>50.0</td>
<td>25</td>
</tr>
<tr>
<td>pressure</td>
<td>15</td>
<td>25</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>Equivalence Ratio</td>
<td>1.4</td>
<td>1.2</td>
<td>1.0</td>
<td>1.7</td>
</tr>
</tbody>
</table>

More than 40 isomer-resolved species with ion masses ranging from 2 (\(H_2 \)) to 74 (\(C_4H_9OH \)) are quantified for each flame.
Targeted C₄- Flame Conditions

<table>
<thead>
<tr>
<th></th>
<th>iC₄H₈</th>
<th>iC₄H₈</th>
<th>iC₄H₁₀</th>
<th>iC₄H₁₀</th>
<th>1-C₄H₈</th>
<th>1-C₄H₈</th>
<th>C₄H₁₀</th>
<th>C₄H₁₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equivalence Ratio</td>
<td>1.60</td>
<td>1.00</td>
<td>1.60</td>
<td>1.00</td>
<td>1.60</td>
<td>1.00</td>
<td>1.60</td>
<td>1.00</td>
</tr>
<tr>
<td>C/O ratio</td>
<td>0.53</td>
<td>0.33</td>
<td>0.49</td>
<td>0.31</td>
<td>0.53</td>
<td>0.33</td>
<td>0.49</td>
<td>0.31</td>
</tr>
<tr>
<td>Pressure (Torr)</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Inlet velocity (cm/s)</td>
<td>44.8</td>
<td>67.2</td>
<td>44.8</td>
<td>67.2</td>
<td>44.8</td>
<td>67.2</td>
<td>44.8</td>
<td>67.2</td>
</tr>
<tr>
<td>Fuel (slm)</td>
<td>0.316</td>
<td>0.214</td>
<td>0.296</td>
<td>0.200</td>
<td>0.316</td>
<td>0.214</td>
<td>0.296</td>
<td>0.200</td>
</tr>
<tr>
<td>O₂ (slm)</td>
<td>1.184</td>
<td>1.286</td>
<td>1.204</td>
<td>1.300</td>
<td>1.184</td>
<td>1.286</td>
<td>1.204</td>
<td>1.300</td>
</tr>
<tr>
<td>Ar (slm)</td>
<td>1.500</td>
<td>1.500</td>
<td>1.500</td>
<td>1.500</td>
<td>1.500</td>
<td>1.500</td>
<td>1.500</td>
<td>1.500</td>
</tr>
</tbody>
</table>

![Chemical structures](image-url)
The n-butanol mechanism has been generated with the RMG of the Green group.

Simulations of the low-pressure flames are sensitive to the \(i-C_{4}H_{5} (CH_{2}=CH-\bullet C=CH_{2} \leftrightarrow \bullet CH_{2}-CH=C=CH_{2}) \) thermochemistry, but are not for the shock tube, RCM, and JSR experiments.
Mole fraction profiles of the major species are predicted accurately.

A more powerful test is provided by comparing modeled and experimental profiles of intermediate species.
n-Butanol: Flame Chemistry Insights

Conceivable *n*-Butanol Consumption Pathways

\[
\text{CH}_3 + \bullet \text{HOH} \rightarrow \text{CH}_3 + \text{HOH}
\]

\[
\text{C}_4\text{H}_9\text{O} \rightarrow \alpha\text{-C}_4\text{H}_9\text{O}
\]

\[
\beta\text{-C}_4\text{H}_9\text{O} \rightarrow \gamma\text{-C}_4\text{H}_9\text{O} \rightarrow \delta\text{-C}_4\text{H}_9\text{O}
\]

\[
\text{C}_4\text{H}_8\text{Oenol} \rightarrow \text{C}_4\text{H}_8\text{Oenol2} \rightarrow \text{C}_4\text{H}_8\text{Oenol3}
\]

\[
\text{CH}_2\text{O} \rightarrow \text{CHOH} \rightarrow \text{C}_4\text{H}_8\text{Oenol} \rightarrow \text{C}_4\text{H}_8\text{Oenol2} \rightarrow \text{C}_4\text{H}_8\text{Oenol3}
\]

\[
\text{CH}_3 + \text{HOH} \rightarrow \text{CH}_3 + \text{HOH}
\]
The formation of the CH₃CH₂CH₂CH₂CHOH (α-C₄H₉O) radical is predicted to be slightly preferred.

The fission of C-C bonds of n-butanol are only significant at high temperatures of the Oßwald et al. flame.
Flame Chemistry Insights
Consumption of the α-$\text{C}_4\text{H}_9\text{O}$ Radical

CH_3-CH_2-CH_2-\bullet-CH-OH

- n-$\text{C}_4\text{H}_9\text{OH} + O = \alpha$-$\text{C}_4\text{H}_9\text{O} + \text{OH}$
- n-$\text{C}_4\text{H}_9\text{OH} + \text{H} = \alpha$-$\text{C}_4\text{H}_9\text{O} + \text{H}_2$
- n-$\text{C}_4\text{H}_9\text{OH} + \text{OH} = \alpha$-$\text{C}_4\text{H}_9\text{O} + \text{H}_2\text{O}$
- α-$\text{C}_4\text{H}_9\text{O} + \text{O}_2 = n$-$\text{C}_4\text{H}_9\text{O} + \text{HO}_2$
- α-$\text{C}_4\text{H}_9\text{O} + \text{O}_2 = \text{C}_4\text{H}_8\text{Oenol} + \text{HO}_2$
- α-$\text{C}_4\text{H}_9\text{O} + \text{O}_2(+\text{M}) = \text{C}_4\text{H}_8\text{Oenol} + \text{HO}_2(+\text{M})$
- α-$\text{C}_4\text{H}_9\text{O} + \text{H} = \text{C}_3\text{H}_7 + \text{CH}_2\text{OH}$
- α-$\text{C}_4\text{H}_9\text{O} + \text{H} = \text{C}_2\text{H}_5 + \text{CH}_2\text{CH}_2\text{OH}$
- α-$\text{C}_4\text{H}_9\text{O} + \text{H} = \text{CH}_3 + \text{CH}_2\text{CH}_2\text{CH}_2\text{OH}$
- α-$\text{C}_4\text{H}_9\text{O} = \text{C}_2\text{H}_5 + \text{CH}_2\text{CHOH}$

- The α-$\text{C}_4\text{H}_9\text{O} + \text{O}_2$ reaction is the main route to n-butanal
- Oßwald et al. did not separate butenols from n-butanal
n-Butanol:

Flame Chemistry Insights

Consumption of the β-C₄H₉O Radical

\[\text{CH}_3\text{-CH}_2\text{-CH}-\text{CH}_2\text{-OH} \]

- The decomposition of β-C₄H₉O is the main route to 1-butene
- Formation of a propenol isomer is not significant
Summary

- Three sets of low-pressure \(n \)-butanol flames have been measured
- The model's predictive capabilities for high-temperature oxidation of \(n \)-butanol have been improved
- \(n \)-butanol oxidation is initiated by H-abstraction by H, O, and OH – formation of \(\alpha \)-C\(_4\)H\(_9\)O is preferred
- C-C bond fissions are only important at high temperatures and the water-elimination reaction is not important under the current conditions
- Subsequent disproportionation reactions of the C\(_4\)H\(_9\)O radicals and fast \(\beta \)-scissions govern the formation of smaller intermediates
- A paper describing the model has been submitted to *Phys. Chem. Chem. Phys.*

Outlook

- Experimental (and modeling) work of flames fueled by *iso*-butanol are (almost) completed and will be presented next year
- We initiated work on *iso*-pentanol
Major Species in *iso*-Butene Flame

- USC Mech II and imposed, experimental temperature
- Discrepancies very near the burner: Uncertainties in local temperature and sampling-cone effect
C₄- Flames:

Minor Species for Fuel-rich *iso*-Butene Flame

- Well predicted profiles for most flame intermediates
- C₄H₄ and C₄H₆ are underpredicted
- The USC model requires further improvement for low-pressure isobutene flames
C₄- Flames:

Rates of Production and Consumption

iso-Butene

\[\text{ROP GasRxn_Total (mole/cm}^3\text{sec)} \]

Distance from Burner (mm)

\[i\text{C}_4\text{H}_8 \rightarrow i\text{C}_4\text{H}_7 \rightarrow \text{aC}_3\text{H}_4 \]

\[\text{CH}_3\text{CCH}_2 \]

iC₄H₇

\[\text{ROP GasRxn_Total (mole/cm}^3\text{sec)} \]

Distance from Burner (mm)

\[i\text{C}_4\text{H}_8+\text{OH}=i\text{C}_4\text{H}_7+\text{H}_2\text{O} \]

\[i\text{C}_4\text{H}_7+\text{H}=\text{CH}_3\text{CCH}_2+\text{CH}_3 \]

\[\text{Total} \]

\[a\text{C}_3\text{H}_4+\text{CH}_3=i\text{C}_4\text{H}_7 \]

\[i\text{C}_4\text{H}_7+(+\text{M})=i\text{C}_4\text{H}_8(+\text{M}) \]
Rates of Production and Consumption

C₄- Flames:

CH₃CCH₂ Radical

Benzene

- More benzene formation than the normal alkene
- $i\text{C}_4\text{H}_7 \rightarrow C_4$ species?
C₄- Flames:

Missing Reactions for C₄ - Species

\[
\begin{align*}
\text{CH}_3\text{C} & \quad \text{CH}_2 \quad + \ M \quad \rightarrow \quad \text{H}_3\text{C} \quad \text{C} \quad \text{CH}_2 \quad \text{CH}_2 \\
\text{H}_3\text{C} \quad \text{C} \quad \text{CH}_2 \quad \text{CH}_2 \quad + \ M \quad - \ H \quad \rightarrow \quad \text{H}_2\text{C} \quad = \quad \text{C} \quad \text{CH}_2 \quad \text{CH}_2 \\
\text{H}_2\text{C} \quad = \quad \text{C} \quad \text{CH}_2 \quad \text{CH}_2 \quad + \ H \ (-H) \quad \rightarrow \quad 1,3\text{-C}_4\text{H}_6 \\
\text{H}_2\text{C} \quad = \quad \text{C} \quad \text{CH}_2 \quad \text{CH}_2 \quad + \ M \quad \rightarrow \quad 1,3\text{-C}_4\text{H}_6
\end{align*}
\]
Predicts reasonably well the shape and magnitude of the newer flame speed curve.
C₄- Flames:

Ignition Delay Time

- The predicted ignition delay times are higher than the experimental data at lower temperatures (1300-1500K)
- Missing C₄- reactions and uncertainty for reaction rate constants of fuel decomposition

C₄- Flames:

Complementary Laser-Based Set-up

- Laser-induced fluorescence (LIF)
- Resonantly enhanced multi-photon ionization (REMPI)
 - mass selected detection of PAHs
 - large dynamic range – PAH concentrations vary (~1000 ppm – 100 ppb)
C₄- Flames: REMPI

- Phi=1.6 flames
- 263 nm; 225mj; 4000 shots
- Iso-isomers have larger soot-tendency
Flame species profiles have been measured by MBMS

Missing pathways: iC_4H_7 to 1,3-butadiene

Revisions and updates are required for the reaction chemistry of isobutene pyrolysis and oxidation to improve the model’s predictive capabilities

Quantitative mole fraction profiles for REMPI-MBMS measurements

Updated C_4- hydrocarbons kinetics model