Current chemical models for combustion consist of kinetic data for thousands of reactions. These models are validated through detailed comparisons with wide ranging experimental observations of flame properties. Unfortunately, much of the validation data is for low pressures (e.g., 1 bar), whereas combustion devices are generally operating at much higher pressures (e.g., 100 bar for many advanced engine concepts).

Recent studies have demonstrated great shortcomings for even the best chemical models at high pressure. The CEERG is addressing these shortcomings through the generation of wide-ranging validation data at significantly higher pressures and the use of this data in the development of improved chemical models. In particular, we are developing and applying methods for studying ignition, propagation, and extinction in stagnation and spherically expanding flame configurations, flame properties for turbulent flames, ignition delays and multi-species time histories in both rapid compression machines and shock tubes, and elementary rate coefficients in shock tubes.

All of these measurements are being performed for pressures ranging up to 20 and 40 bar, with an initial focus on butanol combustion as a key prototypical biofuel. The combination of modeling and theoretical reaction kinetics is being used to improve the chemical model for butanol combustion through careful theoretical studies of the key chemical reactions as indicated by the modeling.

Introduction & Motivation

Ignition and Extinction Studies of Stagnation Flames

Use of a New State of the Art High Pressure Chamber
- Pressure range: 0.5 to 20 bar
- Fuel types: gaseous as well as light and heavy liquid fuels
- Diagnostics:
 - Thermocouple for temperature measurements
 - Digital particle image velocimetry (DPIV) for fluid velocity measurements

Constant Volume Ignition and Propagation Flame Studies

Use of a New Constant Volume Chamber
- Pressure range: 0.5 to 40 bar
- Fuel types: gaseous and light liquid fuels
- Ignition: Combination of traditional and novel approaches
- Diagnostics: Combination of traditional and novel approaches to track the flame-front and characterize the state of ignition

Turbulent Flames at Elevated Pressures

Effects of increasing pressure on the structure & propagation of turbulent flames:
- Appearance of fine structure
- Reduced thickness of embedded flamelets due to increased chemical reactivity
- Reduced thickness further triggers instability-induced wrinkling of the flamelets
- Burning rate is increased
- Increased chemical reactivity
- Increased flamelet surface area due to wrinkling

Images of Turbulent Premixed Methane-Air Flames

Increase in pressure reduces flame thickness and triggers flame wrinkling at progressively smaller scales

Autogeneration of Biofuels

Rapid Compression Machine
- A Rapid Compression Machine is used to study the autogeneration trends of biofuels, including the isomers of butanol and iso-pentanol

Example Low and High Pressure Data

- Ignition delay time measurements using pressure and OH* emission
- Low-P experiments have small facility effects (ΔP/Δh-0% to 500ms, 1%/ms to 1.0 ms)
- High-pressure experiments have negligible facility effects: (ΔP/Δh-0% to 500ms, 1%/ms to 1.0 ms)
- Near constant-volume performance allows zero-dimensional CHEMKIN modeling

Butanol Isomers

Ignition delay times (IDT) measured for all butanol isomers: 1.5 to 43 atm
IDT scales as P⁻ⁿ depending on the isomer and conditions
High quality data will allow refinements to Hansen et. al. (2001) mechanism

Shock tube Butanol Ignition Measurements

Conclusions

Current mechanisms have great uncertainties at the high pressures typical of combustion devices. At high pressures the H₂O₂ to HO₂ chain branching is taken over by stabilization to HO₂ and the chemistry of HO₂ becomes very important.

Developed and applied methods for measuring key combustion properties at pressures up to 20-40 bar.
- Ignition, propagation, and extinction in stagnation and spherically expanding flame configurations, flame properties for turbulent flames, ignition delays and multi-species time histories in both rapid compression machines and shock tubes, and elementary rate coefficients in shock tubes.

We are using these properties to develop accurate chemical mechanisms for combustion of:
1. Core fuels (H₂/H₂O/CO/O₂/CH₄/O₂/C₂H₅/C₂H₆/C₃H₈/C₄H₁₀, etc.).
2. Biofuels with an initial focus on butanols.

Using sensitivity analysis to suggest key elementary reactions for detailed theoretical/experimental study.