Lecture 5

Stoichiometry

Dimensionless Parameters

Moshe Matalon

Stoichiometry

Given the reaction

$$\sum_{i=1}^{N} \nu'_i M_i \rightarrow \sum_{i=1}^{N} \nu''_i M_i$$

we have seen that there is a relation between the change in the number of moles of the species; i.e., for any two species i and j

$$\frac{dn_i}{\nu''_i - \nu'_i} = \frac{dn_j}{\nu''_j - \nu'_j}$$

or in terms of the partial masses

$$\frac{dm_i}{(\nu''_i - \nu'_i)W_i} = \frac{dm_j}{(\nu''_j - \nu'_j)W_j}$$

Since the total of mass (unlike the total number of moles) in the system is unchanged by chemical reaction, we also have

$$\frac{dY'_i}{(\nu''_i - \nu'_i)W_i} = \frac{dY'_j}{(\nu''_j - \nu'_j)W_j}$$

Moshe Matalon
Consider a global reaction describing the combustion of a single fuel, for example, the combustion of a hydrocarbon fuel C_mH_n:

$$
\nu'_F \, C_mH_n + \nu'_O \, O_2 \rightarrow \nu''_{CO_2} \, CO_2 + \nu''_{H_2O} \, H_2O
$$

with the stoichiometric coefficients

$$
\nu'_F = 1, \quad \nu'_O = m + n/4, \quad \nu''_{CO_2} = m, \quad \nu''_{H_2O} = n/2
$$

where ν'_F was taken equal to one, arbitrarily.

which may be written as (primes are unnecessary)

$$
\nu_F \, Fuel + \nu_O \, Oxidizer \rightarrow Products
$$

then ν_O/ν_F is the ratio of the stoichiometric coefficients, and

$$
\frac{dY_F}{\nu_F W_F} = \frac{dY_O}{\nu_O W_O}
$$

Integrating

$$
\frac{dY_F}{\nu_F W_F} = \frac{dY_O}{\nu_O W_O}
$$

between the initial unburned state (subscript u) and a later state

$$
\frac{Y_F - Y_{Fu}}{\nu_F W_F} = \frac{Y_O - Y_{Ou}}{\nu_O W_O}
$$

A fuel-air mixture is referred to as a stoichiometric mixture, if the fuel-to-oxygen ratio is such that both reactants are entirely consumed; i.e. when combustion to CO_2 and H_2O is completed.

$$
\left. \frac{Y_{Ou}}{Y_{Fu}} \right|_{st} = \frac{\nu_O W_O}{\nu_F W_F} \equiv \nu
$$

mass-weighted stoichiometric ratio
In general, the initial state may not be at stoichiometry. A measure of the departure from stoichiometry is given by the equivalent ratio ϕ

$$\phi = \frac{Y_{F_u}/Y_{O_u}}{Y_{F_u}/Y_{O_u}} = \frac{Y_{F_u}/Y_{O_u}}{\nu_F W_F/\nu_O W_O} = \frac{\nu Y_{F_u}}{Y_{O_u}}$$

$$0 < \phi < \infty$$

$\phi = 1$ stoichiometric mixture
$\phi < 1$ lean mixture (in fuel)
$\phi > 1$ rich mixture (in fuel)

for combustion in air, the equivalence ratio is often expressed as the fuel-to-air ratio

$$\phi = \frac{F/Air}{F/Air}_{st}$$

Adiabatic Flame Temperature

If a given combustible mixture is made to approach chemical equilibrium by means of an isobaric, adiabatic process, then the temperature attained by the system is the adiabatic flame temperature T_a.

For an adiabatic, isobaric process $dh = 0$. Integrating from the unburned to the burned state

$$h_u = h_b$$

$$\sum_{i=1}^{N} Y_{i_u} h_i = \sum_{i=1}^{N} Y_{i_b} h_i$$

$$\sum_{i=1}^{N} Y_{i_u} h_i^o + \int_{T_u}^{T_b} c_p u \, dT = \sum_{i=1}^{N} Y_{i_b} h_i^o + \int_{T_u}^{T_b} c_p p \, dT$$

Moshe Matalon

University of Illinois at Urbana-Champaign
\[\sum_{i=1}^{N} (Y_{iu} - Y_{ib}) h_i^o = \int_{T_o}^{T_b} c_{p_u} dT - \int_{T_o}^{T_u} c_{p_u} dT \]

where the specific heats are those of the mixture, calculated with the mass fractions of the unburned/burned gas, respectively

\[c_{p_u} = \sum_{i=1}^{N} Y_{iu} c_{p1}(T), \quad c_{p_b} = \sum_{i=1}^{N} Y_{ib} c_{p1}(T) \]

For a one-step global reaction, where we consider \(j = 1 \) to be the fuel, denoted by \(F \), the equation

\[\frac{dY_i}{(\nu_i'' - \nu_i')W_i} = \frac{dY_j}{(\nu_j'' - \nu_j')W_j} \]

\[\frac{dY_i}{(\nu_i'' - \nu_i')W_i} = -\frac{dY_F}{\nu_F W_F} \]

can be integrated to give

\[Y_{iu} - Y_{ib} = (Y_{Fb} - Y_{Fu}) \frac{(\nu_i'' - \nu_i')W_i}{\nu_F W_F} \]

Using this last relation in the conservation of energy equation:

\[\sum_{i=1}^{N} (Y_{iu} - Y_{ib}) h_i^o = \int_{T_o}^{T_b} c_{p_u} dT - \int_{T_o}^{T_u} c_{p_u} dT \]

\[\frac{Y_{Fb} - Y_{Fu}}{\nu_F W_F} \sum_{i=1}^{N} (\nu_i'' - \nu_i')W_i h_i^o \]

\[\int_{T_o}^{T_b} c_{p_u} dT - \int_{T_o}^{T_u} c_{p_u} dT = \frac{Y_{Fb} - Y_{Fu}}{\nu_F W_F} Q \]

If the reference temperature \(T_o = T_u \), for complete combustion of fuel \((Y_{Fb} = 0) \) the adiabatic flame temperature \(T_a \) is calculated from

\[\int_{T_o}^{T_u} c_{p_u} dT = \frac{Y_{Fu}}{\nu_F W_F} Q \]
It’s convenient to rewrite this relation using the molar heat capacities C_{p_i}.

$$\int_{T_u}^{T_a} C_{p_i} \, dT = \frac{Y_{F_u}}{\nu F} \, Q \quad \Rightarrow \quad \int_{T_u}^{T_a} C_{p_i} \, dT = Q$$

Example:

$\text{CH}_4 + 15 (0.21 \, \text{O}_2 + 0.79 \, \text{N}_2) \rightarrow b_1 \, \text{CO}_2 + b_2 \, \text{H}_2\text{O} + b_3 \, \text{N}_2 + b_4 \, \text{O}_2$

atom conservation $\Rightarrow b_1 = 1 \quad b_2 = 2 \quad b_3 = 11.85 \quad b_4 = 1.15$

$$\int_{T_u}^{T_a} C_{p_i} \, dT = Q$$

Let $T_u = 298 \, \text{K}$ $Q = h^0_{\text{CH}_4} - h^0_{\text{CO}_2} - 2h^0_{\text{H}_2\text{O}} = 191.755 \, \text{kcal}$

$$\int_{T_u}^{T_a} [C_{p_1} + 2C_{p_2} + 11.85C_{p_3} + 1.15C_{p_4}] \, dT = 191.755 \, \text{kcal}$$

use an iterative procedure

for $T_a = 2000 \, \text{K}$, LHS = 231.904

for $T_a = 1700 \, \text{K}$, LHS = 187.019

$\Rightarrow \quad T_a = 1732 \, \text{K}$

this is not accurate because we did not account for product dissociation.

With product dissociation

$\text{CH}_4 + 15 (0.21 \, \text{O}_2 + 0.79 \, \text{N}_2) \rightarrow \text{CO}_2, \, \text{H}_2\text{O}, \, \text{N}_2, \, \text{O}_2, \, \text{NO}, \, \text{H}, \, \text{OH}, \, \text{O}, \, \text{N}, \, \text{CO}, \, \text{O}_3, \, \text{NO}^+, \, \text{etc.}$

and the determination of the final compositions requires, in addition to the atom conservation equations, chemical equilibrium equations.

<table>
<thead>
<tr>
<th>T_a</th>
<th>CO_2</th>
<th>H_2O</th>
<th>CO</th>
<th>N</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1732.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1731.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1731.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1727.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1725.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The inclusion of other products such as $\text{O}_3, \, \text{CH}_3, \, \text{HO}_2, \, \text{CH}_2\text{O}, \, \text{C}_2\text{H}_6, \, \text{NO}_2, \, \text{HCO}$ etc., did not change the adiabatic flame temperature.
Simplified expression

For complete combustion of fuel \((Y_{F_b} = 0) \),
the adiabatic flame temperature \(T_a \) is calculated from

\[
\int_{T_u}^{T_a} c_p \, dT = \frac{Y_{F_u}}{\nu_F W_F} Q
\]

Assume \(c_p \) is nearly constant, the adiabatic temperature for a *lean mixture*, where the fuel is totally consumed \((Y_{F_u} = 0) \) is

\[
T_a = T_u + \frac{(Q/c_p)Y_{F_u}}{\nu_F W_F}
\]

For a rich mixture, the oxidizer is totally consumed \((Y_{O_u} = 0) \), and we obtain in an analogous way

\[
T_a = T_u + \frac{(Q/c_p)Y_{O_u}}{\nu_O W_O}
\]

The two expressions are identical when \(\phi = 1 \).

TABLE 1.2 Approximate Flame Temperatures of Various Stoichiometric Mixtures, Initial Temperature 298 K

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Oxidizer</th>
<th>Pressure (atm)</th>
<th>Temperature (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylene</td>
<td>Air</td>
<td>1</td>
<td>2600</td>
</tr>
<tr>
<td>Acetylene</td>
<td>Oxygen</td>
<td>1</td>
<td>3410</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>Air</td>
<td>1</td>
<td>1840</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>Oxygen</td>
<td>1</td>
<td>2400</td>
</tr>
<tr>
<td>Heptane</td>
<td>Air</td>
<td>1</td>
<td>2290</td>
</tr>
<tr>
<td>Heptane</td>
<td>Oxygen</td>
<td>1</td>
<td>3100</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>Air</td>
<td>1</td>
<td>2400</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>Oxygen</td>
<td>1</td>
<td>3080</td>
</tr>
<tr>
<td>Methane</td>
<td>Air</td>
<td>1</td>
<td>2210</td>
</tr>
<tr>
<td>Methane</td>
<td>Air</td>
<td>20</td>
<td>2270</td>
</tr>
<tr>
<td>Methane</td>
<td>Oxygen</td>
<td>1</td>
<td>3010</td>
</tr>
<tr>
<td>Methane</td>
<td>Oxygen</td>
<td>20</td>
<td>3460</td>
</tr>
</tbody>
</table>

*The maximum exists at \(\phi = 1.1 \).
*The maximum exists at \(\phi = 1.7 \).

Glassman & Yetter, 2008
If the reference temperature $T_o = T_u$, for complete combustion of fuel ($Y_{F_u} = 0$) the adiabatic flame temperature T_a is calculated from

$$T_a = T_u + \left(\frac{Q}{c_v} \right) Y_{F_u}$$

Assuming constant specific heats

$$T_b = T_u + \frac{(Q/c_v)Y_{F_u}}{\nu F W_F}$$

and T_b is clearly larger than the adiabatic flame temperature T_a. For lean/rich mixtures

$$T_b = T_u + \frac{(Q/c_v)Y_{O_u}}{\nu O W_O}$$
Simplified Model and Dimensionless Equations

In the following the chemistry will be represented by a global one-step (irreversible) reaction

$$\nu_F \text{ Fuel} + \nu_O \text{ Oxidizer} \rightarrow \text{Products}$$

describing the combustion of a single fuel.

The reaction will be assumed of order n_F, n_O, with respect to the fuel/oxidizer, and an overall order $n = n_F + n_O$. The reaction rate will be assumed to obey an Arrhenius law

$$\omega = B \left(\frac{\rho Y_F}{W_F} \right)^{n_F} \left(\frac{\rho Y_O}{W_O} \right)^{n_O} e^{-E/RT}$$

with an overall activation energy E and a pre-exponential factor B (treated as constant).
For simplicity, we will treat $\mu, \lambda, \rho D_i$ constants (although some of the theoretical development could accommodate temperature-dependent transport without much difficulty) so that

$$\frac{\partial p}{\partial t} + \nabla \cdot \rho \mathbf{v} = 0$$

$$\rho \frac{D\mathbf{v}}{Dt} = -\nabla p + \mu \left[\nabla^2 \mathbf{v} + \frac{1}{3} \nabla (\nabla \cdot \mathbf{v}) \right] + \rho g$$

$$\rho \frac{DY_i}{Dt} - \rho D_i \nabla^2 Y_i = -\nu_i W_i \omega, \quad i = F, O$$

$$\frac{\rho c_p DT}{Dt} - \lambda \nabla^2 T = \frac{Dp}{Dt} + \Phi + Q \omega$$

$$p = \rho RT/W$$

$$\omega = B \left(\frac{\rho V_F}{W_F} \right)^{\rho_F} \left(\frac{\rho V_O}{W_O} \right)^{\rho_O} e^{-E/RT}$$

Non-dimensional Equations

Characteristic values:

- the fresh unburned state p_0, ρ_0, T_0 (satisfying $p_0 = \rho_0 RT_0/W$) for p, ρ, T
- a characteristic speed v_0 to be specified
- the diffusion length $l_D \equiv D_{th}/v_0$ for distances, where $D_{th} = \lambda/\rho c_p$ is the mixture thermal diffusivity
- the diffusion time l_D/v_0 for t

This choice is clearly not unique and there may be other length, time, and velocity scales that, for a given problem, could be more relevant.

We will use the same variables for the dimensionless quantities; i.e. after substituting $\tilde{\mathbf{v}} = \mathbf{v}/v_0$ say, we remove the "$.$
\[
\begin{align*}
\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{v} &= 0 \\
\rho \frac{D \mathbf{v}}{Dt} &= -\frac{1}{\gamma M^2} \nabla p + \text{Pr} \left[\nabla^2 \mathbf{v} + \frac{1}{3} \nabla (\nabla \cdot \mathbf{v}) \right] + \text{Fr}^{-1} \rho \mathbf{e}_g \\
\rho \frac{DY_F}{Dt} - Le_F^{-1} \nabla^2 Y_F &= -\omega \\
\rho \frac{DY_O}{Dt} - Le_O^{-1} \nabla^2 Y_O &= -\nu \omega \\
\rho \frac{DT}{Dt} - \nabla^2 T &= \frac{\gamma - 1}{\gamma} \left(\frac{Dp}{Dt} + \text{Pr} M^2 \Phi \right) + q \omega \\
p &= \rho T \\
\omega &= D \rho^n Y_F^n Y_O^n e^{-\beta_0/T}
\end{align*}
\]

\textbf{Dimensionless Parameters}

\begin{align*}
M &= \frac{v_0}{\sqrt{\gamma p_0/\rho_0}} \quad \text{Mach number} \\
\text{Fr} &= \frac{v_0^2/l_D}{g} \quad \text{Froude number} \\
\text{Pr} &= \frac{\mu c_p}{\lambda} \quad \text{Prandtl number} \\
Le_i &= \frac{\lambda/\rho c_p}{D_i} \quad \text{Lewis number of species } i \\
n &= \frac{Q/\nu F}{cp T_0} \quad \text{heat release parameter} \\
\nu &= \frac{\nu_O W_O}{\nu_F W_F} \quad \text{mass weighted stoichiometric coeff.} \\
D &= \frac{\left(\frac{l_D}{v_0} \right)}{\left[(\rho_0/W_F)^{-1} (\rho_0/W_O)^{-\nu F} \mathbf{F} \right]^{-1}} = \frac{\text{flow time}}{\text{reaction time}} \quad \text{Damköhler number}
\end{align*}

Note: the units of \(\nu F \mathbf{F} \) like the units of \(t \) is \(\left(\text{[conc]}^{-1} \text{[time]} \right) \) \(\text{[one usually set } \nu F = 1 \text{ in writing the chemical reaction equation].} \)
Low Mach Number Approximation

The propagation speed of ordinary deflagration waves is in the range 1-100 cm/s, namely much smaller than the speed of sound (in air $a_0 = 34,000$ cm/s).

$$M \ll 1$$

momentum equation $\Rightarrow \nabla p = 0$

$$p = P(t) + \gamma M^2 \hat{p}(x,t) + \cdots$$

will all other variables expressed as $v + \gamma M^2 \hat{v} + \cdots$

$$\rho \frac{Dv}{Dt} = -\nabla \hat{p} + Pr \left[\nabla^2 v + \frac{1}{3} \nabla (\nabla \cdot v) \right] + Fr^{-1} \rho e_g$$

$$\rho \frac{DT}{Dt} - \nabla^2 T = \frac{\gamma - 1}{\gamma} \frac{dP}{dt} + q \omega$$

$$\rho T = P(t)$$

acoustic disturbances travel infinitely fast, and are filtered out.

Unless $P(t)$ is specified, we are missing an equation, since p has been replaced by two variables P and \hat{p}. An equation in bounded problems can be obtained as follows:

$$\rho \frac{\partial T}{\partial t} + \rho v \cdot \nabla T - \nabla^2 T = \frac{\gamma - 1}{\gamma} \frac{dP}{dt} + q \omega$$

$$\frac{\partial p}{\partial t} + \nabla \cdot \rho v = 0 \quad / T$$

$$\frac{\partial (\rho T)}{\partial t} + \nabla \cdot (\rho v T) - \nabla^2 T = \frac{\gamma - 1}{\gamma} \frac{dP}{dt} + q \omega$$

$$\frac{1}{\gamma} \frac{dP}{dt} = -\nabla \cdot (P v - \nabla T) + q \omega$$

$$\frac{1}{\gamma} \int \frac{dP}{dt} dV = -\int_S (P v - \nabla T) \cdot n dS + q \int \omega dV$$

on the surface S, $v \cdot n = 0$ and for adiabatic conditions $\partial T/\partial n = 0$.

$$\frac{dP}{dt} = \frac{\gamma q}{V} \int \omega dV$$
The low Mach number equations are (with the ”hat” in \(p \) removed), therefore

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0
\]

\[
\rho \frac{D\mathbf{v}}{Dt} = -\nabla p + Pr \left[\nabla^2 \mathbf{v} + \frac{1}{3} \nabla (\nabla \cdot \mathbf{v}) \right] + Fr^{-1} \rho e_g
\]

\[
\rho \frac{DY_F}{Dt} - L e_F^{-1} \nabla^2 Y_F = -\omega
\]

\[
\rho \frac{DY_O}{Dt} - L e_O^{-1} \nabla^2 Y_O = -\nu \omega
\]

\[
\rho \frac{DT}{Dt} - \nabla^2 T = \frac{\gamma - 1}{\gamma} \frac{dP}{dt} + q \omega
\]

\[
\rho T = P
\]

and when the underlying pressure does not change in time, \(P = 1 \).

Otherwise, unless it is specified, we need an equation for \(P(t) \) (the pressure \(p \) has been replaced by two variables \(P \) and \(\hat{p} \)), which can be obtained by a global integration across the entire volume (as discussed below).

Moshe Matalon

Coupling Functions

For unity Lewis numbers the operator on the left hand side of these three equations is the same.

\[
\rho \frac{DY_F}{Dt} - L e_F^{-1} \nabla^2 Y_F = -\omega
\]

\[
\rho \frac{DY_O}{Dt} - L e_O^{-1} \nabla^2 Y_O = -\nu \omega
\]

\[
\rho \frac{DT}{Dt} - \nabla^2 T = q \omega
\]

The combinations \(H_F = T + qY_F \) and \(H_O = T + q Y_O/\nu \) (and hence \(Y_F - Y_O/\nu \)) satisfy reaction-free equations

\[
\rho \frac{DH_i}{Dt} - \nabla^2 H_i = 0
\]

leaving only one equation with the highly nonlinear reaction rate term. This is a great simplification, but as we shall see, small variations of the Lewis numbers from one produce instabilities and nontrivial consequences.

Moshe Matalon
The constant-density approximation $\rho = 1$
Thermo-Diffusive model

One must abandon the equation of state $\rho T = 1$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{v} = 0$$

$$\rho \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\nabla p + Pr \left[\nabla^2 \mathbf{v} + \frac{1}{3} \nabla (\nabla \cdot \mathbf{v}) \right] + Fr^{-1} \rho \mathbf{e}_g$$

solve to determine \mathbf{v}

$$\rho \frac{\partial Y_F}{\partial t} + \mathbf{v} \cdot \nabla Y_F - Le_F^{-1} \nabla^2 Y_F = -\omega$$

$$\rho \frac{\partial Y_O}{\partial t} + \mathbf{v} \cdot \nabla Y_O - Le_O^{-1} \nabla^2 Y_O = -\nu \omega$$

$$\rho \frac{\partial T}{\partial t} + \mathbf{v} \cdot T - \nabla^2 T = q$$

Can be derived systematically by assuming that the heat release $q \ll 1$