Motivation: Shock tubes with lasers is a chemical kinetics research frontier!

1. Introduction to Shock Tubes
2. Vibrational Relaxation
3. Ignition Studies
4. Advances in Shock Tube Modeling
1. Introduction to Shock Tubes

Basic concept:

- High-pressure driver gas expands upon diaphragm opening, creating shock wave
- Test gas is instantaneously compressed and heated to combustion temperatures by incident and reflected shocks
- High-temperature experiments monitored near endwall
1. Introduction to Shock Tubes

Basic concept:

- High-pressure driver gas expands upon diaphragm opening creating shock wave
- Test gas is instantaneously compressed and heated to combustion temperatures from incident and reflected shocks
- High-temperature experiments monitored at endwall
1. Introduction to Shock Tubes

Shock Tube Characteristics:

- Instantaneous heating/compression from shock waves
- Accurately known incident- and reflected-shock conditions (from incident shock M_S)
- Wide range of post-reflected shock T and P (600-4000 K, 0.1-1000 atm)
1. Introduction to Shock Tubes

Primary uses
- Astrophysics/comets
- Blast waves (e.g. nuclear explosions)
- Chemical kinetics
- Gasdynamics/aerodynamics
- Heat transfer (radiation + convection)
- Spectroscopy

1899: Vieille (France) first shock tube constructed

1940’s: US/Canada/GB mine safety, shock-induced explosions, aerodynamics

1950’s: first applications to high-temperature chemical kinetics (CalTech)

1960’s: re-entry studies

1970’s: First use of lasers for species detection (Stanford/Ames)

1900 1920 1940 1960 1980 2000
1. Introduction to Shock Tubes

1-D Shock Wave Theory

Laboratory-fixed coordinates

- Incident shock speed governed by diaphragm burst pressure

\[
\frac{P_4}{P_1} = \frac{2\gamma_1 M_1^2 - (\gamma_1 - 1)}{\gamma_1 + 1} \left\{ 1 - \left(\frac{\gamma_4 - 1}{\gamma_1 + 1} \right) \left(\frac{a_1}{a_4} \right) \left(M_1 - \frac{1}{M_1} \right) \right\} \left(\frac{2\gamma_4}{\gamma_4 - 1} \right)
\]

- Boundary condition \(u_5 = 0 \) determines the speed of the reflected shock
- All Region 5 conditions governed by incident shock speed
- See Gaydon and Hurle
1. Introduction to Shock Tubes

Shock Jump Values

<table>
<thead>
<tr>
<th>γ</th>
<th>M_1</th>
<th>P_2/P_1</th>
<th>P_5/P_2</th>
<th>T_2/T_1</th>
<th>T_5/T_2</th>
<th>ρ_2/ρ_1</th>
<th>ρ_5/ρ_2</th>
<th>W_R/W_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/5</td>
<td>2.95</td>
<td>10</td>
<td>4.95</td>
<td>2.62</td>
<td>1.76</td>
<td>3.82</td>
<td>2.82</td>
<td>0.423</td>
</tr>
<tr>
<td></td>
<td>6.56</td>
<td>50</td>
<td>7.12</td>
<td>9.31</td>
<td>2.28</td>
<td>5.37</td>
<td>3.11</td>
<td>0.351</td>
</tr>
<tr>
<td></td>
<td>∞</td>
<td>∞</td>
<td>8.00</td>
<td>∞</td>
<td>2.29</td>
<td>6.00</td>
<td>3.50</td>
<td>0.333</td>
</tr>
<tr>
<td>5/3</td>
<td>2.87</td>
<td>10</td>
<td>4.22</td>
<td>3.42</td>
<td>1.94</td>
<td>2.92</td>
<td>2.17</td>
<td>0.589</td>
</tr>
<tr>
<td></td>
<td>6.34</td>
<td>50</td>
<td>5.54</td>
<td>13.4</td>
<td>2.37</td>
<td>3.72</td>
<td>2.31</td>
<td>0.517</td>
</tr>
<tr>
<td></td>
<td>∞</td>
<td>∞</td>
<td>6.00</td>
<td>∞</td>
<td>2.40</td>
<td>4.00</td>
<td>2.50</td>
<td>0.500</td>
</tr>
</tbody>
</table>
1. Introduction to Shock Tubes

Test Time in Reflected-Shock Experiments

- Particles are stationary behind the reflected shock:
 - lab time = particle time
- Test time is limited by the reflected shock interaction with the contact surface
 - Typical test time ~ 1-3 ms
1. Introduction to Shock Tubes

Test Time in Reflected-Shock Experiments

Tailored driver gases optimize the reflected-shock-contact surface, increasing the test time.

- Tailored test times ≥ 10 ms
2. Vibrational Relaxation

Recall our previous lectures on the vibrational energy in diatomic molecules

- **Use a simple harmonic oscillator model (HO)**

![Simple Harmonic Oscillator](image)

- Molecular energy depends on inter-nuclei spacing and fundamental frequency

 \[u = \frac{1}{2} k x^2, \quad x = r - r_e \]

 \[v = \frac{1}{2\pi} \sqrt{\frac{k}{m}}, \quad k = \text{spring constant}; \quad v = \text{fundamental frequency of vibration} \]

- But energy levels are quantized!

 \[\varepsilon_i = i \hbar v = \text{energy in level } i \]

- Can use Boltzmann statistics (PGD) to determine distribution

 \[x_i = \frac{N_i}{N} = \left(\frac{e^{-\theta_i/T}}{1 - e^{-\theta_i/T}} \right) = \text{fractional population in level } i \]

 \[\theta_v = \frac{\hbar v}{k} = \frac{\hbar c}{k} \left(\omega = \frac{1}{\lambda} \right) = \text{characteristic vibrational temperature} \]

 \[e_v = \frac{R \theta_v}{e^{\theta_v/T} - 1} = \text{average vibrational energy per molecule} \]
2. Vibrational Relaxation

Vibrational energy distribution function (from Boltzmann statistics)

\[
x_i^* = \frac{N_{i}^*}{N} = \frac{e^{-\theta_i/T}}{Q} = \frac{1}{1 - e^{-\theta_i/T}}
\]

- More molecules in lower vibrational levels than in high vibrational levels
- Higher energy levels get populated at higher temperatures
- Temperature refers to the vibrational temperature \((T = T_v)\), the same as translational temperature in vibrational equilibrium
- If \(T_v \neq T_{\text{trans}}\) then vibrational energy transfer will occur until the system reaches equilibrium
 \(\rightarrow\) vibrational relaxation!
2. Vibrational Relaxation

V-T Energy Transfer

- How fast does relaxation occur?
- Rate of relaxation follows the Bethe-Teller relationship

\[
dE_v/dt = \frac{E_v^*(T_{tr}) - E_v}{\tau}
\]

- \(E_v \) = vibrational energy (e.g. per mole, unit mass, etc.)
- \(E_v^*(T_{tr}) \) = vibrational energy at translational temperature (i.e. equilibrium)

- Vibrational energy \((E_v) \) changes at a rate proportional to deviation from the equilibrium value \((E_v^*) \)

- Dependencies
 - Relaxation time constant: \(\tau = \frac{1}{ZMP_{1,0} \left(1 - e^{-\theta_v/T}\right)} \)
 - As \(T \) increases, the relaxation time constant decreases
 - The relaxation time constant is independent from the deviation from equilibrium
 - The relaxation time constant is also independent of the initial vibrational distribution

- How can we measure \(\tau \)

\[v \]

\[\nu \]

\[\nu^* \]

\[\nu^V \]

\[\nu^T \]

\[\nu^E \]
2. Vibrational Relaxation

Vibrational Relaxation in Shock Tubes

- Test mixture of HO's starts out in vibrational equilibrium (Region 1)
- Translational temperature is instantaneously increased by the arrival of the incident shock
- Vibrational temperature needs time to relax
- V-T energy exchange occurs (and energy must be conserved)
- Faster relaxation time behind reflected shock because temperatures are higher.
- Note the equilibrium temperature is lower than the vibrationally frozen temperature
2. Vibrational Relaxation

Shock Tube Studies of Vibrational Relaxation

- Millikan and White were able to measure the vibrational relaxation speed of CO, O₂, N₂, and air at various temperatures using shock tubes
 - Seed small amounts of CO into the test gas
 - IR emission of CO near 4.7 microns
 - Optical interferometry to monitor pressure/density change due to N₂/O₂ relaxation

![Graph](image)

Fig. 1 Experimental data on vibrational relaxation of the components of air.

Fig. 2 Interferogram of a Mach 5.13 shock wave traveling to the right into 0.1 atm of air. A density increase displaces the interference fringes upward. The vertical field of view is 2.7 cm and includes the upper surface of the shock tube. The sharper fringe curvature immediately behind the shock front is attributed to vibrational relaxation of O₂.
2. Vibrational Relaxation

• **Modern Experiments with Laser Diagnostics**

Goal:
• High-temperature O_2 vibration relaxation rates

Experimental Strategy:
• Shock heat highly diluted mixtures of O_2 in Ar
• New diagnostic (MIRA laser) to measure O_2 in deep UV (Schumann-Runge) at 206 to 245 nm
2. Vibrational Relaxation

Experimental Setup

- Reflected shock absorption experiments
- Beer’s law: \(\frac{I}{I_0} = \exp(-n_v \sigma(T_{rot}, T_{vib})) = e^{-\alpha(t)} \)
- Measure \(\alpha(t) \)
- Infer \(n_v(t) \) and \(e_v(t) \)

MIRA operating range: 206-1000 nm
Pulse rate: 80 MHz, equivalent to CW
Average power: 2-20 mW at 206 nm to 245 nm

How does this relate to \(O_2 \) vibrational populations?
2. Vibrational Relaxation

- **Schumann-Runge O₂ system** \((B^3Σ_u^- \leftarrow X^3Σ_g^+\) has overlapping features
- Select wavelengths sensitive to specific \(v''\)
- Laser experiments measure total absorption at fixed \(\lambda\), involves many lines
- **Goal:** Infer \(n_{v''}(t)\) for \(v' = 3-7\) from absorbances at peak \(\lambda\)’s

![Graph showing vibrational relaxation with specific wavelengths and vibrational quantum numbers](image)

- 206 nm: \(v'' = 3\)
- 211 nm: \(v'' = 4\)
- 223 nm: \(v'' = 5\)
- 235 nm: \(v'' = 6\)
- 245 nm: \(v' = 7\)

Envelope of rovibronic lines for a specific \(v''\)
2. Example O_2 Data and Model

- excellent signal-to-noise ratio (noise $\sim 0.3\%$ absorbance)
- High-accuracy determination of X_{O2}, T_5, P_5
- high-accuracy measurement of t_{vib}
- Initial data support an evolving Boltzmann distribution for e_{vib}
- t_{vib} can be plotted on a Landau-Teller plot
2. Landau-Teller Plot

O₂ vibrational relaxation measurements

- Current work in close agreement with classic studies (Millikan and White (1963), but with much lower scatter
- Experiments with varying O₂ fraction →
 \[\tau_{VT}(O₂-O₂) \text{ and } \tau_{VT}(O₂-Ar) \]

Mixture Rule for τ:

\[\frac{1}{\tau_{\text{mix}}} = \sum X_j \frac{1}{\tau_j} \]

\[\tau_{VT}(O₂-O₂) \text{ and } \tau_{VT}(O₂-Ar) \]
3. Ignition Studies

1. Kinetics of branched chain reactions
2. Definition of ignition
3. Examples
3.1. Kinetics of Branched Chain Reactions: Basic Mechanism for Hydrogen Oxidation

(1) \(H_2 + O_2 \rightarrow HO_2 + H \)
(2) \(OH + H_2 \rightarrow H + H_2O \)
(3) \(H + O_2 \rightarrow OH + O \)
(4) \(O + H_2 \rightarrow OH + H \)
(5) \(H + O_2 + M \rightarrow HO_2 + M \)
(6-8) \(H, O, OH + \text{wall} \rightarrow \text{removal} \) by adsorption, wall-catalyzed reactions → stable species

- Build up of a radical pool during oxidation
- This characterizes ignition!
- Also exothermic reactions generate heat release/pressure increase

Net effect of branching is to create radicals:

- **Step 1:** \(H + O_2 \rightarrow OH + O \)
- **Step 2:** \(OH + H_2 \rightarrow H + H_2O \)
- **Step 3:** \(O + H_2 \rightarrow OH + H \)
- **Step 4:** \(OH + H_2 \rightarrow H + H_2O \)

Net:

\[
H + O_2 + 3H_2 \rightarrow 3H + 2H_2O \Rightarrow +2H!
\]
3.2. Definition of Ignition Time

- **Ignition delay time in reflected shock experiments:** time between passing of the reflected shock and onset of ignition

- **Onset of ignition:** linearly extrapolating the point of steepest rise back in time to the pre-ignition baseline

- Measure through $P_5(t)$ and OH*(t) emission at 306 nm (A-X)

- Close agreement of pressure and emission measurement
3.3. Examples

- Able to examine correlations for ignition times in different alkanes
- Negative temperature dependence of ignition times is seen at low-intermediate temperatures

![Graph showing ignition delay time vs. temperature for n-Alkane/4% O₂/Ar. The graph includes data for C₄, C₅, C₆, C₉, n-Butane, n-Pentane, n-Hexane, and n-Nonane. The graph also shows data for n-Heptane and n-Dodecane in air, Φ=1. The temperature is given in [1/K] and the delay time in [µs]. The pressure is 15 atm.](image-url)
4. Advances in Shock Tube Methods

1. Extended drivers & tailored gas mixtures for longer test times

2. Driver inserts for improved spatial and temporal uniformity

3. New approaches to reactive gas modeling
4.1. Extended drivers & tailored gas mixtures for longer test times

- Conventional shock tube operation: ~ 1-3 ms test time
- No overlap with RCM operation: ~ 10-150 ms test time
4.1. Extended drivers & tailored gas mixtures for longer test times

• Longer driver length and tailored gas mixtures can provide longer test times (50+ ms)

2x Driver Extension

• Shock tubes now can overlap with RCMs
4.2. Driver inserts for improved spatial and temporal uniformity

- **Problem:** boundary layers and attenuation induce dP/dt and dT/dt that change ignition times

- **Solution:** Driver inserts that modify flow to achieve uniform T and P at long test times

\[
\frac{dP}{dt} = 3\%/\text{ms} \\
\frac{dT}{dt} = 1.2\%/\text{ms}
\]

$T_{\text{initial}} = 1039 \text{ K}$

0.8% Propane/ 8% O_2/ Ar
4.2. Driver inserts for improved spatial and temporal uniformity

- **Result:** \(\frac{dP}{dt} = 0 \) prior to ignition
 - Improved \(\tau_{\text{ign}} \) for comparison with simulations

- **Solution:** Driver inserts that modify flow to achieve uniform \(T \) and \(P \) at long test times

- **Example:** Propane Ignition
4.2. Driver inserts for improved spatial and temporal uniformity

- Modifications yield improved ignition delay times for propane

- \(\frac{dP}{dt} = 0 \) data provide improved targets for constant U,V simulations

- Experimentalists must report facility \(\frac{dP}{dt} \) to allow modelers to make useful comparisons with detailed mechanisms, e.g. via CHEMSHOCK
4.3. New approaches to reactive gas modeling

Reactive Gasdynamics Modeling: The Problem

- Most current reflected shock modeling assumes Constant Volume or Constant Pressure

But:

- Reflected shock reactions are not Constant V or Constant P processes!

- Example: Heptane Ignition
4.3. New approaches to reactive gas modeling

- Effect of Energy Release on P Profiles: n-Heptane Oxidation

- This is not a Constant P process!
4.3. New approaches to reactive gas modeling

- Effect of Energy Release on P Profiles: n-Heptane Oxidation

- This is not a Constant P process!
- Also not a Constant V process!
- So how can entire process be modeled?
4.3. New approaches to reactive gas modeling

- Proposed Solutions to Enable Modeling through Entire Combustion Event

 - Minimize fuel loading to reduce exothermically- or endothermically-driven T and P changes
 - enabled by high-sensitivity laser diagnostics

 - Use new constrained reaction volume (CRV) concept to minimize pressure perturbations
 - enables constant P (or specified P) modeling
4.3. New approaches to reactive gas modeling

- Constrained Reaction Volume (CRV) Approach

Conventional Shock Tube

- Pre-Shock: Helium, Test Mixture
- Post-Reflected Shock: Large Region of Energy Release

Constrained Reaction Volume

- Pre-Shock: Helium, Non-Reactive Mix, TM
- Post-Reflected Shock: Small Region of Energy Release

- Large reaction volume gives large energy release $\rightarrow \Delta P & \Delta T$
- CRV gives reduced energy release \rightarrow near-constant P
- Also eliminates any question of remote ignition!
4.3. New approaches to reactive gas modeling

- Use of Constrained Reaction Volume (CRV) Approach
- 1st Example: Hydrogen Ignition at 950 K

- Conventional ST exhibits large pressure change!
- CRV pressure nearly constant throughout experiment!
- Allows 1st kinetics modeling through ignition and combustion in non-dilute systems!
4.3. New approaches to reactive gas modeling

- Confirmation of CRV Approach

 2nd Example: \(\text{C}_2\text{H}_4 \) Ignition, Temperature and OH

- Measured \(T \) validates CRV approach and illustrates power of \(T \) as a kinetics diagnostic
4.3. New approaches to reactive gas modeling

- 3rd Example: Low Temperature 1-Butanol Ignition Data
 Comparison of Conventional Filling and CRV Experiments

- CRV & conventional filling data agree at at high T
- CRV yields longer delay times at lower T than conventional filling
- CRV provides true constant H, P data, conventional data are difficult to model
4.3. New approaches to reactive gas modeling

- 3rd Example: Low Temperature 1-Butanol Ignition Data
 Comparison of Conventional Filling and CRV Experiments

- CRV & conventional filling data agree at at high T
- CRV yields longer delay times at lower T than conventional filling
- CRV provides true constant H, P data, conventional data are difficult to model
Next: Shock Tube Applications with Lasers

- Elementary Reactions
- Multi-Species Time-Histories