Lecture 8: Case Study: UV - OH

UV absorption of OH: \(A^2\Sigma^+ \rightarrow X^2\Pi \) (~300nm)

1. Introduction
2. OH energy levels
 - Upper level
 - Lower level
3. Allowed radiative transitions
 - Transition notations
 - Allowed transitions
4. Working example - OH

Allowed rotational transitions from \(N''=13 \) in the \(A^2\Sigma^+ \leftarrow X^2\Pi \) system
1. Introduction

- OH, a prominent flame emitter, absorber. Useful for T, X_{OH} measurements.

Selected region of $A^2\Sigma^+ \leftarrow \chi^2\Pi(0,0)$ band at 2000K
1. Introduction

Steps in analysis to obtain spectral absorption coefficient

1. Identify/calculate energy levels of upper + lower states
2. Establish allowed transitions
3. Introduce “transition notation”
4. Identify/characterize oscillator strengths using Hönl-London factors
5. Calculate Boltzmann fraction
6. Calculate lineshape function
7. Calculate absorption coefficient
2. Energy levels

Term energies

\[
E(n, v, J) = T_e(n) + G(v) + F(J)
\]

- Separation of terms: Born-Oppenheimer approximation
- \(G(v) = \omega_e(v + 1/2) - \omega_e x_e (v + 1/2)^2 \)
- Sources of \(T_e, \omega_e, \omega_e x_e \) ➔ Herzberg
- Overall system: \(A^2\Sigma^+ \leftarrow X^2\Pi \)

<table>
<thead>
<tr>
<th>(A^2\Sigma^+)</th>
<th>(T_e)</th>
<th>(\omega_e)</th>
<th>(\omega_e x_e)</th>
<th>(\chi^2\Pi)</th>
<th>(T_e)</th>
<th>(\omega_e)</th>
<th>(\omega_e x_e)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32682.0</td>
<td>3184.28</td>
<td>97.84</td>
<td>0.0</td>
<td>3735.21</td>
<td>82.21</td>
<td></td>
</tr>
</tbody>
</table>

Let’s first look at the upper state ➔ Hund’s case b!
2. Energy levels

Hund’s case b ($\Lambda=0$, $S\neq 0$) – more standard, especially for hydrides

Recall:

- Σ, Ω not rigorously defined
- $N = \text{angular momentum without spin}$
- $S = \text{1/2-integer values}$
- $J = N+S$, $N+S-1$, \ldots, $|N-S|$
- $i = 1, 2, \ldots$

$F_i(N) = \text{rotational term energy}$

Now, specifically, for OH?
2. Energy levels

The upper state is $A^2\Sigma^+$

For OH:

- $\Lambda = 0$, $\therefore \Sigma$ not defined \Rightarrow use Hund’s case b
- $N = 0, 1, 2, \ldots$
- $S = 1/2$
- $J = N \pm 1/2$
- F_1 denotes $J = N + 1/2$
- F_2 denotes $J = N - 1/2$

Common to write either $F_1(N)$ or $F_1(J)$
2. Energy levels

- The upper state: $A^2\Sigma^+$

\[
\begin{align*}
F_1(N) &= B_v N(N + 1) - D_v [N(N + 1)]^2 + \gamma_v N \\
F_2(N) &= B_v N(N + 1) - D_v [N(N + 1)]^2 - \gamma_v (N + 1)
\end{align*}
\]

(splitting constant $\gamma_v \approx 0.1\text{cm}^{-1}$ for OH $A^2\Sigma^+$)

- the spin-splitting is $\gamma_v(2N+1)$ function of v; increases with N

\[
\gamma_v(2N+1) \sim 0.1(5) \sim 0.5\text{cm}^{-1} \text{ for } N_2
\]

Compare with $\Delta
\nu_D(1800\text{K}) = 0.23\text{cm}^{-1}$

- Notes:
 - Progression for $A^2\Sigma^+$
 - “+” denotes positive “parity” for even N [wave function symmetry]
 - Importance? Selection rules require parity change in transition
2. Energy levels

- The ground state: $X^2\Pi (\Lambda=1, S=1/2)$

![Diagram showing energy levels](image)

- **Hund’s case a**
 - $\Lambda \neq 0$, $S \neq 0$, Σ defined

- **Hund’s case b**
 - $\Lambda = 0$, $S \neq 0$, Σ not defined

Note:

1. Rules less strong for hydrides
2. OH behaves like Hund’s a @ low N
 like Hund’s b @ large N
 - at large N, \vec{L} couples more to N, Λ is less defined, S decouples from A-axis
3. Result? OH $X^2\Pi$ is termed “intermediate case”
2. Energy levels

The ground state: \(X^2\Pi \)

Notes:

3. For “intermediate/transition cases”

\[
F_1(N) = B_v \left\{ (N+1)^2 - \Lambda^2 - \frac{1}{2} \left[4(N+1)^2 + Y_v(Y_v - 4)\Lambda^2 \right]^{1/2} \right\} - D_v [N(N+1)]^2
\]

\[
F_2(N) = B_v \left\{ N^2 - \Lambda^2 + \frac{1}{2} \left[4N^2 + Y_v(Y_v - 4)\Lambda^2 \right]^{1/2} \right\} - D_v [N(N+1)]^2
\]

where \(Y_v \equiv A/B_v \) (< 0 for OH); \(A \) is effectively the moment of inertia

Note: \(F_1(N) < F_2(N) \)

For small \(N \)

Behaves like Hund’s a, i.e., symmetric top, with spin splitting \(\Lambda \Lambda \)

For large \(N \)

Behaves like Hund’s b, with small (declining) effect from spin

\[
F_1 \rightarrow B_v [(N+1)^2 - \Lambda^2 - (N+1)]
\]

\[
F_2 \rightarrow B_v [N^2 - \Lambda^2 + N]
\]

\[F_1 - F_2 \rightarrow B_v [(N+1)^2 - N^2 - (2N+1)] \rightarrow 0 \]
2. Energy levels

The ground state: $X^2\Pi$

Notes:

4. Some similarity to symmetric top

$$F_1: J = N + 1/2 \quad F_2: J = N - 1/2$$

$$\Omega = 3/2 \quad \Omega = 1/2$$

Showed earlier that $F_1 < F_2$

$$T_e = T_0 + A\Lambda\Sigma$$

For OH, $A = -140 \text{ cm}^{-1}$

$$\Rightarrow T_e = T_0 + (-140)(1)(1/2), \quad \Sigma = 1/2$$

$$+ (-140)(1)(-1/2), \quad \Sigma = -1/2$$

$$\Rightarrow \Delta T_e = 140 \text{ cm}^{-1}$$

Not too far off the 130 cm$^{-1}$ spacing for minimum J

Recall: Hund’s case a has constant difference of 2(A-Bν) for same J

$$F(J) = BJ(J+1) + (A-B)\Omega^2$$

$$(A-B)\Omega^2 \approx -158.5\Omega^2$$

(A for OH~ -140, B ~ 18.5), $\Omega = 3/2, 1/2$

$$\Rightarrow \Omega = 3/2 \text{ state lower by } 316 \text{ cm}^{-1}$$

Actual spacing is only 188 cm$^{-1}$, reflects that hydrides quickly go to Hund’s case b
2. Energy levels

The ground state: $X^2\Pi$

Notes:
5. Role of Λ-doubling

Now let's proceed to draw transitions, but first let's give a primer on transition notation.
3. Allowed radiative transitions

- **Transition notations**

 Full description: $A^2Σ^+ (v') \leftarrow X^2Π (v'') \gamma X_{αβ}(N'' \text{ or } J'')$

 where $Y = ΔN$ (O, P, Q, R, S for $ΔN = -2 \text{ to } +2$)

 $X = ΔJ$ (P, Q, R for $ΔJ = -1, 0, +1$)

 $α = i \text{ in } F_i'; i.e., 1 \text{ for } F_1, 2 \text{ for } F_2$

 $β = i \text{ in } F_i''; i.e., 1 \text{ for } F_1, 2 \text{ for } F_2$

- **Notes:**

 Strongest trans. e.g., $R_1(7)$ or R_{17}

 - 1. Y suppressed when $ΔN = ΔJ$
 - 2. $β$ suppressed when $α = β$
 - 3. Both N'' and J'' are used

- **General selection rules**

 - Parity must change $+ \rightarrow -$ or $- \rightarrow +$
 - $ΔJ = 0, ±1$
 - No Q ($J = 0$) transitions, $J = 0 \rightarrow J = 0$ not allowed

Example: sR_{21}:

- $ΔJ = +1, ΔN = +2$
- $F' = F_2(N')$
- $F'' = F_1(N'')$
3. Allowed radiative transitions

- Allowed transitions

Allowed rotational transitions from N''=13 in the $A^2\Sigma^+ \leftrightarrow X^2\Pi$ system

- 12 bands possible (3 originating from each lambda-doubled, spin-split X state)
- Main branches: $\alpha = \beta$; Cross-branches: $\alpha \neq \beta$
- Cross-branches weaken as N increases
3. Allowed radiative transitions

Allowed transitions

Allowed rotational transitions from $N''=13$ in the $A^2\Sigma^+ \leftarrow X^2\Pi$ system

Notes:
- A given J'' (or N'') has 12 branches (6 are strong; $\Delta J = \Delta N$)
- $+ \leftrightarrow -$ rule on parity
- $F_{1c} - F_{1d} \approx 0.04N(N+1)$ for OH ⇒ for $N\approx10$, Λ-doubling is $\sim 4\text{cm}^{-1}$, giving clear separation
- If upper state has Λ-doubling, we get twice as many lines!
3. Allowed radiative transitions

- Allowed transitions

Allowed rotational transitions from \(N'' = 13 \) in the \(A^2\Sigma^+ \leftrightarrow X^2\Sigma^+ \) system

- Note:
 1. The effect of the parity selection rule in reducing the number of allowed main branches to 4
 2. The simplification when \(\Lambda = 0 \) in lower state, i.e., no \(\Lambda \)-doubling
Complete steps to calculate absorption coefficient

1. Identify/characterize oscillator strengths using Hönl-London factors
2. Calculate Boltzmann fraction
3. Calculate lineshape function \(_{(narrow\text{-}band\text{ vs broad\text{-}band)}\)
4. Calculate absorption coefficient

Absorption coefficient

\[
\frac{0.0265\ cm^2/s}{N_1/N_a} \times \frac{P_A}{kT} \times \frac{1}{c} \phi(s) = \phi(cm)
\]

To do: evaluate \(f_{12}, N_1/N_a\)

Step 4 Step 5
4.1. Oscillator strengths

Absorption oscillator strength

\[f(n'', v'', \Sigma'', J'', \Lambda''), (n', v', \Sigma', J', \Lambda') = f_{n''n'} q_{v''v'} \frac{S_{J''J'}}{2J''+1} \]

or in shorthand notation

\[f_{J''J'} = f_{n''n'} q_{v''v'} \frac{S_{J''J'}}{2J''+1} = f_{v''v'} \]

= band oscillator strength

Notes: \(q_{v''v'} \) and \(S_{J''J'} \) are normalized

- \(\sum_{v'} q_{v''v'} = 1 \)
- \(\sum_{J'} S_{J''J'} = (2J''+1)(2S+1) \delta_{g''_i=4} \) for \(\Sigma''=4 \) for \(\Lambda=0 \) (\(\Sigma \) state), 2 otherwise

For OH \(\Lambda^2\Sigma^+-X^2\Pi \)

<table>
<thead>
<tr>
<th>((v', v''))</th>
<th>(f_{v''v'})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0)</td>
<td>0.00096</td>
</tr>
<tr>
<td>(1,0)</td>
<td>0.00028</td>
</tr>
</tbody>
</table>
4.1. Oscillator strengths

Is \(S_{J'J''} = S_{J''J'} \)? Yes, for our normalization scheme!

- From \(g_1 f_{12} = g_2 f_{21} \), and recognizing that \(2J+1 \) is the ultimate (non removable) degeneracy at the state level, we can write, for a specific transition between single states

\[
\frac{(2J'+1)}{2J''+1} \cdot \frac{f_{1e}}{q_{v'n'}} \cdot \frac{S_{J'J''}}{2J''+1} = \left(\frac{2J''+1}{2J'+1} \right) \cdot \frac{f_{2e}'}{q_{v'n''}} \cdot \frac{S_{J''J'}}{2J'+1}
\]

In this way, there are no remaining electronic degeneracy and we require, for detailed balance, that \(f_{1e} = f_{1e}' \), \(q_{v'n'} = q_{v'n''} \) and \(S_{J''J'} = S_{J',J''} \).

- Do we always enforce \(\sum_{J''} S_{J''J'} = (2J''+1) \) for a state? No!

- But note we do enforce

\[
\sum_{J''} S_{J''J'} = (2J''+1) (2S+1) \delta \quad (14.17)
\]

and

\[
\sum_{J''} S_{J''J'} = (2J'+1) (2S+1) \delta \quad (14.19)
\]

where, for OH \(A^2 \Sigma \leftarrow X^2 \Pi \), \((2S+1) = 2 \) and \(\delta = 2 \).

- When is there a problem?

- Everything is okay for \(\Sigma-\Sigma \) and \(\Pi-\Pi \), where there are equal “elec. degeneracies”, i.e., \(g''_{el} = g'_{el} \). But for \(\Sigma-\Pi \) (as in OH), we have an issue. In the \(X^2 \Pi \) state, \(g_{el} = 4 \) (2 for spin and 2 for \(\Lambda \)-doubling), meaning each J is split into 4 states. Inspection of our H-L tables for \(S_{J'',J'} \) for OH \(A^2 \Sigma \leftarrow X^2 \Pi \) (absorption) confirms \(\Sigma S_{J'',J'} \) from each state is \(2J''+1 \). All is well. But, in the upper state, \(^2 \Sigma \), we have a degeneracy \(g'_{el} \) of 2 (for spin), not 4, and now we will find that the sum of \(\sum_{J''} S_{J'',J'} \) is twice \(2J'+1 \) for a single \(J' \) when we use the H-L values for \(S_{J'',J'} \) for \(S_{J',J''} \). However, as there are 2 states with \(J' \), the overall sum \(\sum_{J'} S_{J',J''} = (2J'+1)4 \) as required by (14.19).
4.1. Oscillator strengths

Absorption oscillator strength for f_{00} in OH $A^2\Sigma^+ - X^2\Pi$

<table>
<thead>
<tr>
<th>Source</th>
<th>f_{00}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oldenberg, et al. (1938)</td>
<td>0.00095 ± 0.00014</td>
</tr>
<tr>
<td>Dyne (1958)</td>
<td>0.00054 ± 0.0001</td>
</tr>
<tr>
<td>Carrington (1959)</td>
<td>0.00107 ± 0.00043</td>
</tr>
<tr>
<td>Lapp (1961)</td>
<td>0.00100 ± 0.0006</td>
</tr>
<tr>
<td>Bennett, et al. (1963)</td>
<td>0.00078 ± 0.00008</td>
</tr>
<tr>
<td>Golden, et al. (1963)</td>
<td>0.00071 ± 0.00011</td>
</tr>
<tr>
<td>Engleman, et al. (1973)</td>
<td>0.00096</td>
</tr>
<tr>
<td>Bennett, et al. (1964)</td>
<td>0.0008 ± 0.00008</td>
</tr>
<tr>
<td>Anketell, et al. (1967)</td>
<td>0.00148 ± 0.00013</td>
</tr>
</tbody>
</table>
4.1. Oscillator strengths

Absorption oscillator strength

<table>
<thead>
<tr>
<th>Transition</th>
<th>$S_{J'J}/(2J'^{+}+1)$</th>
<th>$\Sigma F_1(J)$</th>
<th>$\Sigma F_2(J)$</th>
<th>$\Sigma [F_1(J)+F_2(J)]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q_{12}(0.5)$</td>
<td>0.667</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>$Q_2(0.5)$</td>
<td>0.667</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_{12}(0.5)$</td>
<td>0.333</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_2(0.5)$</td>
<td>0.333</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P_1(1.5)$</td>
<td>0.588</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>$P_{12}(1.5)$</td>
<td>0.078</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P_{21}(1.5)$</td>
<td>0.392</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P_2(1.5)$</td>
<td>0.275</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Q_1(1.5)$</td>
<td>0.562</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Q_{12}(1.5)$</td>
<td>0.372</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Q_{21}(1.5)$</td>
<td>0.246</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Q_2(1.5)$</td>
<td>0.678</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_1(1.5)$</td>
<td>0.165</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_{12}(1.5)$</td>
<td>0.235</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_2(1.5)$</td>
<td>0.047</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_{21}(1.5)$</td>
<td>0.353</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P_1(2.5)$</td>
<td>0.530</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>$P_{12}(2.5)$</td>
<td>0.070</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P_{21}(2.5)$</td>
<td>0.242</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P_2(2.5)$</td>
<td>0.358</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Q_1(2.5)$</td>
<td>0.708</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Q_{12}(2.5)$</td>
<td>0.263</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Q_{21}(2.5)$</td>
<td>0.214</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Q_2(2.5)$</td>
<td>0.214</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_1(2.5)$</td>
<td>0.757</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_{12}(2.5)$</td>
<td>0.256</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_2(2.5)$</td>
<td>0.173</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_{21}(2.5)$</td>
<td>0.050</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_3(2.5)$</td>
<td>0.379</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hönl-London factors for selected OH transitions

<table>
<thead>
<tr>
<th>Transition</th>
<th>$S_{J'J}/(2J'^{+}+1)$</th>
<th>$\Sigma F_1(J)$</th>
<th>$\Sigma F_2(J)$</th>
<th>$\Sigma [F_1(J)+F_2(J)]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_1(3.5)$</td>
<td>0.515</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>$P_{12}(3.5)$</td>
<td>0.056</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P_{21}(3.5)$</td>
<td>0.405</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P_2(3.5)$</td>
<td>0.790</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Q_1(3.5)$</td>
<td>0.195</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Q_{12}(3.5)$</td>
<td>0.170</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Q_{21}(3.5)$</td>
<td>0.814</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Q_2(3.5)$</td>
<td>0.316</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_1(3.5)$</td>
<td>0.131</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_{12}(3.5)$</td>
<td>0.044</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_2(3.5)$</td>
<td>0.402</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_{21}(3.5)$</td>
<td>0.511</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>$P_{12}(9.5)$</td>
<td>0.016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P_{21}(9.5)$</td>
<td>0.038</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P_2(9.5)$</td>
<td>0.488</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Q_1(9.5)$</td>
<td>0.947</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Q_{12}(9.5)$</td>
<td>0.950</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Q_{21}(9.5)$</td>
<td>0.050</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Q_2(9.5)$</td>
<td>0.048</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_1(9.5)$</td>
<td>0.441</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_{12}(9.5)$</td>
<td>0.035</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_2(9.5)$</td>
<td>0.014</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_3(9.5)$</td>
<td>0.462</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.2. Boltzmann fraction

1. We seek the fraction of molecules in a single state for which

\[\sum_{J''} S_{J'',J'} = 2J'' + 1 \]

2. In general,

\[\frac{N_i}{N} = g_i e^{-\varepsilon_i / kT} / Q \]

\[Q = Q_e \cdot Q_v \cdot Q_r \]

3. Electronic mode

\[g_e = (2S + 1) \phi \]

\[\phi = 1, \Lambda = 0 \]

\[g_e = 4 \]

\[2 \Pi \]

\[\text{OH} \]

\[g_e = 2 \]

\[2 \Sigma \]

\# of rot. levels produced by spin splitting & \Lambda-doubling = 4 for \(2 \Pi \)

\[\sum S_{J''J'} = 2J'' + 1 \text{ for each state} \]

Elec. level

the sum of this over all levels is 1

\[\frac{N(n)}{N} = (2S + 1) \phi \exp(-hcT_e(n)/kT) / Q_e \]

\[Q_e = \sum_n (2S + 1) \phi \exp(-hcT_e(n)/kT) \]

\[\text{Note:} \]

hund's (a) includes \(A\Omega^2 \)
4.2. Boltzmann fraction

4. Vibrational mode

\[
\frac{N(n, v)}{N(n)} = \exp\left(-\frac{\hbar c G(v)}{kT}\right) / Q_v
\]

\[
Q_v = \sum_v \exp\left(-\frac{\hbar c G(v)}{kT}\right)
\]

5. Rotational mode (hund’s (b))

\[
\frac{N(n, v, N)}{N(n, v)} = (2N+1) \exp\left(-\frac{\hbar c F(N)}{kT}\right) / Q_r
\]

\[
Q_r = \sum_{N=\Lambda}^{\infty} (2N+1) \exp\left(-\frac{\hbar c F(N)}{kT}\right)
\]

\[
Q_r = \frac{T}{\theta_r} \text{ for } T \gg \theta_r
\]

Note: don’t use \(F_1 + F_2(N) \) here; until we add spin splitting

Now what about fraction of those with \(N \) in a given \(J \)?

\[
\frac{N(n, v, N, J)}{N(n, v, N)} = \frac{(2J+1)}{(2N+1)(2S+1)}
\]

Since # of states in \(N \) is \((2N+1)(2S+1)\phi, \)

while # of states in \(J \) is \((2J+1) \phi \)

\[
\approx \frac{1}{2} \text{ for OH as expected}
\]

\[
\frac{N(n, v, N, J, p)}{N(n, v, N, J)} = \frac{1}{\phi}
\]

(fraction with spectral parity)
4.2. Boltzmann fraction

6. Combining

\[
\frac{N(n, v, N, J, p)}{N} = \frac{N_1}{N} \quad (\text{i.e., the Boltzmann fraction in state 1})
\]

\[
= \frac{N(n)N(n,v)N(n,v,N)N(n,v,N,J)N(n,v,N,J,p)}{N N(n) N(n,v) N(n,v,N) N(n,v,N,J)}
\]

\[
(2J + 1) \exp \left(- \frac{hc}{kT} \left[T_e(n) + G(v) + F_i(N) \right] \right)
\]

\[
= \frac{Q_e Q_v Q_r}{Q_e Q_v Q_r}
\]

Note:

1. The fraction in a given state is 1/4 of that given by rigid rotor!
2. Always know \(\Sigma (N_i/N) = 1 \), both in total and for each mode separately.

We have 1 loose end to deal with: narrow-band and broadband absorption measurement.
4.3. Narrow-band vs broad-band absorption measurement

Narrow-band absorption
Measured quantity

\[T_\nu = \left(\frac{I}{I_0} \right)_\nu = \exp(-S_{12}\phi_\nu L) \quad \text{with} \quad S_{12} = \left[\frac{\pi e^2}{m_e c} \right] N_l f_{12} \left(1 - \exp \left(\frac{h\nu}{kT} \right) \right) \]

- Oscillator strength for transition
- Boltzmann fraction of species \(l = F_{\nu*,j*,...}(T) \)

thus, if \(T_\nu \) (e.g. \(T_{\nu_0} \)) is measured, and
if \(L, p, 2\gamma, T, f_{12} \) are known

\[= \sum_{i} 2\gamma_i X_i \]

bd. species

then can solve for \(N_l \) → Quantity usually sought
4.3. Narrow-band vs broad-band absorption measurement

Let’s look at the classical (old-time) approach, pre 1975

- Broadband absorption

 ![Diagram of broadband absorption](image)

 Integrated area is called: integrated absorbance, or eq. width

 Eq. width $W_{J''J'}$ (cm$^{-1}$)

 (for 1 line from 1 state)

 $$W_{\text{line}} = W_{J''J'} = \int A(\nu) d\nu = \int (1 - T(\nu)) d\nu$$

 $$= \int_{\text{line}} \{1 - \exp(-K_{J''J'}(\nu)L)\} d\nu$$

 Transform variables

 $$\bar{\nu} = \frac{\Delta \nu_D}{\sqrt{2 \ln 2}} x$$

 $$W_{J''J'} = \frac{\Delta \nu_D}{\sqrt{\ln 2}} \int_0^\infty \left\{1 - \exp \left[-K_{J''J'} L \frac{2 \sqrt{\ln 2}}{\sqrt{\pi} \Delta \nu_D} V(x, a)\right]\right\} dx$$

 Integrated area
4.3. Narrow-band vs broad-band absorption measurement

Let’s look at the classical (old-time) approach, pre 1975

- Broadband absorption
 - Requires use of “curves of growth”

\[
W_{J''J'} = \frac{\Delta \bar{V}_D}{\sqrt{\ln 2}} \int_0^\infty \left\{ 1 - \exp \left[-K_{J''J'}L \frac{2\sqrt{\ln 2}}{\sqrt{\pi} \Delta \bar{V}_D} V(x, a) \right] \right\} dx
\]

- Procedure: measure \(W_{J''J'} \), calculate \(\Delta \nu_D \) and \(a \), infer \(K_{J''J'} \), convert \(K_{J''J'} \) to \(N_{\text{species}} \)

- Note:
 1. Simple interpretation only in optically thin limit,
 \[
 W_{J''J'} = \int [1 - (1 - K_{J''J'} \phi(\bar{v})L)] d\bar{v}
 \]
 \[
 W_{J''J'} = K_{J''J'}L = \frac{\pi e^2}{mc^2} N_{1,f_{12}}L
 \]
 2. Measured eq. width is indep. of instrument broadening!
 3. Before lasers, use of absorption spectroscopy for species measurements require use of Curves of Growth!
4.4. Example calculation (narrow-band)

- Consider spectral absorption coefficient of the (0,0)Q\(_1\)(9) line in the OH A\(^2\Sigma^+-X^2\Pi\) system, at line center.
 - \(\lambda\approx309.6\text{nm},\ \nu\approx32300\text{cm}^{-1},\ T=2000\text{K},\ \Delta\nu_C = 0.05\text{cm}^{-1}\)

Express \(k_\nu\) as a function of OH partial pressure

\[
k_\nu[\text{cm}^{-1}] = 2.651 \times 10^{-2} \frac{\text{cm}^2}{\text{s}} \frac{P_a}{kT} \frac{N_{(n,x,x,\nu,J,A)}}{N_a} \phi(\nu_0)
\]

\(N_a = P_a / kT\)

1. Oscillator strength (using tables)

\[
f_{Q(9)} = f_{\nu''\nu'} \frac{S_{J''J'}}{2J''+1} = 0.00096 \times 0.947 = 9.09 \times 10^{-4}
\]

2. Lineshape factor (narrow-band)

\[
\Delta \bar{\nu}_D(2000\text{K}) = 0.25\text{cm}^{-1}
\Delta \bar{\nu}_C(2000\text{K}) = 0.05\text{cm}^{-1}
\]

\[
\left\{ \begin{array}{l}
a = 0.17 \Rightarrow \phi(\nu_0) = 3.13\text{cm} \quad \text{or} \quad 1.04 \times 10^{-10}\text{s}
\end{array} \right.
\]
4.4. Example calculation (narrow-band)

Consider spectral absorption coefficient of the (0,0)Q_1(9) line in the OH A^2Σ^+–X^2Π system, at line center.

- $\lambda \approx 309.6\text{ nm}$, $\nu \approx 32300\text{ cm}^{-1}$, $T = 2000\text{ K}$, $\Delta \nu_C = 0.05\text{ cm}^{-1}$

Express k_ν as a function of OH partial pressure

$$k_\nu \left[\text{cm}^{-1} \right] = 2.651 \times 10^{-2} \frac{\text{cm}^2}{\text{s}} \frac{P_a}{kT} \frac{N_{(n,\nu,x,J,\Lambda)}}{N_a} f_{J^0,J^1} \phi(\nu_0)$$

$N_a = P_a / kT$

Population fraction in the absorbing state

$$\frac{N_{f_{ic}(0.5)}}{N_a} = \exp\left[-\frac{hcT_e(0)/kT}{Q_e}\right] \cdot \exp\left[-\frac{hcG(0)/kT}{Q_v}\right] \cdot \frac{2J''+1}{(2J''+1)\exp\left[-\frac{hcF_1(9.5)/kT}{Q_r}\right]}$$

<table>
<thead>
<tr>
<th>$N_{f_{ic}(0.5)}/N_a$</th>
<th>Q_e</th>
<th>Q_v</th>
<th>Q_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{\exp(0)}{4}$</td>
<td>$\exp[-2660K/T]$</td>
<td>0.287</td>
<td>$\frac{20\exp[-2313K/T]}{T/26.66K}$</td>
</tr>
<tr>
<td>$= 0.25$</td>
<td>0.264</td>
<td>6.29</td>
<td></td>
</tr>
<tr>
<td>$1/4$</td>
<td>0.287</td>
<td>75.0</td>
<td></td>
</tr>
<tr>
<td>$= 0.0193$</td>
<td>0.920</td>
<td>0.0839</td>
<td></td>
</tr>
</tbody>
</table>
4.4. Example calculation (narrow-band)

- Consider spectral absorption coefficient of the \((0,0)Q_1(9)\) line in the \(\text{OH} \ A^2\Sigma^+ - X^2\Pi\) system, at line center.
 - \(\lambda \sim 309.6\text{nm}, \nu \sim 32300\text{cm}^{-1}, T = 2000\text{K}, \Delta \nu_C = 0.05\text{cm}^{-1}\)

Express \(k_\nu\) as a function of OH partial pressure

\[
k_\nu \left[\text{cm}^{-1} \right] = 2.651 \times 10^{-2} \text{ cm}^2 \text{s}^{-1} \frac{\text{P}_a}{kT} \left(\frac{N_{n,v,x,j,J,A}}{N_a} \right) f_{J'\nu,J} \phi(\nu_0) \]

\[
N_a = \frac{P_a}{kT}
\]

\[
k_\nu \left[\text{cm}^{-1} \right] = \left(2.651 \times 10^{-2} \text{ cm}^2 \text{s}^{-1} \right) \left(\text{P}_a \text{[atm]} \right) \left(3.66 \times 10^{18} \text{ cm}^{-3} \text{ atm}^{-1} \right) \left(1.93\% \right) \left(9.09 \times 10^{-4} \right) \left(1.04 \times 10^{-10} \text{ s} \right)
\]

\[
= 177 \text{ cm}^{-1} \text{ atm}^{-1} \left(\text{P}_a \text{[atm]} \right)
\]

Beer’s Law \(I_\nu = I_\nu^0 \exp(-k_\nu L)\)

- 59% absorption
 - for \(L = 5\text{cm}, X_{\text{OH}} = 1000\text{ppm}, T = 2000\text{K}, P = 1\text{atm}\)
4.4. Example calculation (narrow-band)

- Selected region of OH $A^2\Sigma^+ \leftarrow X^2\Pi$ (0,0) band at 2000K

Notes:

- Lines belonging to a specific branch are connected with dashed or dotted curve

- Thicker dashed lines – main branches; thin dotted lines – cross branches

- Bandhead in R branches if $B_{v'} < B_{v''}$; Bandhead in P branches if $B_{v'} > B_{v''}$

- Note bandhead in $^RQ_{21}$ branch
Next:
TDLAS, Lasers and Fibers

- Fundamentals
- Applications to Aeropropulsion