Combustion Physics
(Day 4 Lecture)

Chung K. Law
Robert H. Goddard Professor
Princeton University

Princeton-CEFRC-Combustion Institute
Summer School on Combustion
June 20-24, 2016
Day 4: Laminar Premixed Flames

1. The standard premixed flame
 1. Phenomenological and asymptotic analyses
 2. Parametric dependence
 3. Chemical structure

2. Limit phenomena
 1. The S-curve concept
 2. Extinction through volumetric heat loss

3. Aerodynamics of flames
 1. Hydrodynamic stretch
 2. Flame stretch
 3. Flamefront instabilities
1. The Standard Premixed Flame
Structure of (Standard) Premixed Flame

1. Hydrodynamic, Rankine-Hugoniot level (strong discontinuity):
 - Flame sheet
 - Uniform upstream and downstream states

2. Reaction-sheet level (weak discontinuity):
 - Additional preheat, diffusion zone of thickness ℓ^o_D : reaction frozen due to large T_a, diffusion-convection controlling

3. Complete structure
 - Additional reaction zone: $\ell^o_R << \ell^o_D$ for large activation energy
 - Convection negligible relative to diffusion due to small ℓ^o_R, diffusion-reaction controlling
 - System is conservative

\[f = \rho u = \rho_u u^o_u = \rho_b u^o_b, \quad c_p (T^o_b - T_u) = q_c Y_u \]
Flame Characteristics (1/5)

- Characteristic temperature change across reaction zone

\[
(\Delta T)_R = [T_b^o - T(x_f^-)] \sim [w/(dw/dT)]_{T_b^o} = (T_b^o)^2/T_a \\
\]

\[
w \sim \exp(-T_a/T) \\
\]

- Continuity of heat flux through preheat and reaction zones

\[
\frac{\ell^o_R}{\ell^o_D} \sim \frac{(\Delta T)_R}{T_b^o - T_u} = \frac{(T_b^o)^2}{(T_b^o - T_u)T_a} = Ze^{-1} \ll 1.
\]

(7.2.5)
Flame Characteristics (2/5)

- Convection and diffusion balance in preheat zone:

\[
(f^o \frac{d}{dx} \sim \frac{d}{dx}[(\frac{\lambda}{c_p}) \frac{d}{dx}], \quad f^o \sim (\frac{\lambda}{c_p}) \frac{d}{dx})
\]

\[
f^o \sim \frac{\lambda}{c_p} \frac{d}{\ell^o_D}.
\]

(7.2.6)

- Overall mass flux conservation:

Reactant mass flux entering flame \((Y_u f^o)\) =

Reaction flux through reaction zone \((Y_u w_b^o \ell^o_R)\)

\[
\Rightarrow \quad f^o \sim w_b^o \ell^o_R.
\]

(7.2.7)
Flame Characteristics (3/5)

- Solving for f^o and ℓ^o_D from (7.2.6) and (7.2.7), using (7.2.5)

\[
(f^o)^2 \sim \frac{(\lambda / c_p)w^o}{Ze}, \quad (\ell^o_D)^2 \sim \frac{(\lambda / c_p)}{w^o}Ze
\]

(7.2.8, 9)

- Results show three fundamental quantities governing flame response
 - λ/c_p : diffusion
 - w^o_b : reaction
 - Ze : activation (T_a) and exothermicity (T_b^o)
Flame Characteristics (4/5)

- Propagation rate, which is a response of the flame, is the geometric average of the diffusion and reaction rates, which are the driving forces in forming the flame.

 \[f^o \sim \sqrt{\left(\frac{\lambda}{c_p}\right)w^o_b} \]

- Dependence on transport:
 - Nonpremixed flame: \(f^o \sim \frac{\lambda}{c_p} \); diffusion dominating
 - Premixed flame: \(f^o \sim \sqrt{\frac{\lambda}{c_p}} \); “diluted” by reaction

- (7.2.8) and (7.2.9) can be alternately expressed as
 - \(f^o \ell^o_D \sim \frac{\lambda}{c_p} \): depends only on transport
 - \(\frac{f^o}{\ell^o_p} \sim \frac{w^o_b}{Ze} \): depends only on reaction
Since there are only two controlling processes (diffusion and reaction: $\lambda / c_p, w_b^o$), flame characteristics are described by two independent relations, which can be expressed in three different ways to convey different messages:

- **Balance of processes:**

 \[f^o \sim \frac{\lambda / c_p}{\ell^o_D}, \quad f^o \sim w_b^o \ell^o_R \]

- **Explicit expressions for the responses:**

 \[(f^o)^2 \sim \frac{(\lambda / c_p) w_b^o}{Z e}, \quad (\ell^o_D)^2 \sim \frac{(\lambda / c_p) w_b^o}{Z e} \]

- **Explicit dependence on individual processes:**

 \[f^o \ell^o_D \sim \lambda / c_p, \quad \frac{f^o}{\ell^o_D} \sim \frac{w_b^o}{Z e} \]
Specific Dependence on Pressure

- $w_b^o \sim p^n; \lambda / c_p$ pressure insensitive
- $f^o \sim [(\lambda / c_p)w_b^o]^{1/2} \sim (w_b^o)^{1/2} \sim p^{n/2}$, $s_u^o \sim f^o / \rho_u \sim f^o / p \sim p^{(n-1)/2}$

 $\ell_D^o \sim (\lambda / c_p / w_b^o)^{1/2} \sim p^{-n/2}$

- Implications:
 - For $n = 2$: $s_u^o \neq f(p)$; cancellation between density and reaction; this is not a fundamental result
 - For $0 < n < 2$: f^o increases and s_u^o decreases with increasing p
 - Dependence of ℓ_D^o on p is through reaction, not diffusion
Asymptotic Analysis
Governing Equations \((Le = 1)\) \((1/2)\)

- **Dimensional:**
 \[
 f^o c_p \frac{dT}{dx} - \lambda \frac{d^2 T}{dx^2} = q_c w,
 \]
 \[
 f^o \frac{dY}{dx} - \rho D \frac{d^2 Y}{dx^2} = -w
 \]

- **Nondimensional:**
 \[
 \frac{d^2 \tilde{T}}{d\tilde{x}^2} - \frac{d\tilde{T}}{d\tilde{x}} = -D \alpha^o_c \tilde{Y} e^{-\tilde{T}/\tilde{T}_o},
 \]
 \[
 \frac{d^2 (\tilde{T} + \tilde{Y})}{d\tilde{x}^2} - \frac{d (\tilde{T} + \tilde{Y})}{d\tilde{x}} = 0; \quad Le = 1
 \]
 \[
 Da^o_c = \frac{\lambda / c_p}{\left(f^o\right)^2} B_c, \quad \tilde{x} = \frac{f^o}{\lambda / c_p} x,
 \]

- **B.C.** :
 \[
 \tilde{x} = -\infty: \quad T = T_u, \quad \tilde{Y} = 1,
 \]
 \[
 \tilde{x} = \infty: \quad T = T_b, \quad \tilde{Y} = 0,
 \]
 \[
 \tilde{x} = \pm \infty: \quad \frac{dT}{d\tilde{x}} = \frac{d\tilde{Y}}{d\tilde{x}} = 0.
 \]
Governing Equations (2/2)

- Integrating (7.3.5’) once; with b. c. at $\tilde{x} = -\infty$,

$$\frac{d(T + \tilde{Y})}{dx} = \frac{d(T + \tilde{Y})}{dx} = (T_a + 1). \quad (7.3.10’)$$

 o Evaluating (7.3.10’) at $\tilde{x} = +\infty$ yields T_{ad}: $T_b^o = 1 + T_u = \hat{T}_{ad}$

- Integrating (7.3.10’) again:

$$T + \tilde{Y} = T_b^o + c_1 e^{\hat{x}} = T_b^o \quad \text{for boundedness at } \hat{x} = \infty$$

- Substituting $\hat{Y} = \tilde{T}_b^o - \tilde{T}$ into (7.3.4) yields the single equation that needs to be solved:

$$\frac{d^2 \tilde{T}}{dx^2} - \frac{d \tilde{T}}{dx} = -D a_c \left(T_b^o - \tilde{T} \right) e^{-\hat{T}_a/\hat{T}} \quad (7.3.13)$$

 o This is why $\beta = \hat{T} + \hat{Y}$ is called a (de-)coupling function
The Cold Boundary Difficulty

• Evaluating\[\frac{d^2\tilde{T}}{d\tilde{x}^2} - \frac{d\tilde{T}}{d\tilde{x}} = -D a_c^0 \tilde{Y} e^{-\tilde{T}/T_{\infty}},\] (7.3.4)

at the \(\tilde{x} = -\infty\) freestream, where

- \(\frac{d^2\tilde{T}}{d\tilde{x}^2} = 0, \frac{d\tilde{T}}{d\tilde{x}} = 0 \Rightarrow LHS = 0\)
- \(\tilde{Y} = 1, \tilde{T} = \tilde{T}_{-\infty} \Rightarrow RHS \neq 0\)

Thus the governing equation is unbalanced \(\Rightarrow\) ill posed

• Difficulty exists for many steady-state problems with premixture at ambience: reactive ambience has infinite time to react \(\Rightarrow\) all reactants would be reacted before arrival of flame \(\Rightarrow\) unphysical posing of problem

• Recourse
 - Artificial suppression of reaction term at \(\tilde{x} = -\infty\)
 - Asymptotic analysis: Rational freezing of reaction at \(\tilde{x} = -\infty\)
 due to large activation energy.
Distinguished Limit (1/2)

• Asymptotic analysis capitalizes on the largeness of activation energy which localizes reaction to a thin zone.
• Consider reaction rate: \(\tilde{w} \sim Da_c \tilde{Y} e^{-\tilde{T}_a/\tilde{T}} \)
• For \(\tilde{T}_a >> 1 \to \infty \) and \(Da_c \tilde{Y} \) fixed, \(\Rightarrow \tilde{w} \to 0 \) \(\Rightarrow \)
• No reaction in the reaction zone, obviously wrong!
• Thus the limit \(\tilde{T}_a \to \infty \) must be taken rationally
Distinguished Limit (2/2)

- Distinguished limit:
 \[T_a \to \infty \text{ requires } D a_c \to \infty \text{ such that } \tilde{w} \text{ is fixed.} \]

- Express \(D a_c \sim D a e^{T_a / T_b^o} \)

 Then
 \[\tilde{w} \sim D a \exp \left[T_a \left(\frac{1}{T_b^o} - \frac{1}{T} \right) \right] \approx D a \exp \left[-Z e \left(T_b^o - \tilde{T} \right) \right] \]

- Thus for \(\tilde{w} \) to remain fixed, \(Z e \to \infty \) requires

 \[\tilde{T} \to \tilde{T}_b^o \Rightarrow \text{thin reaction zone} \]
Procedure for Asymptotic Analysis

• Separately obtain (partial) solutions for the three zones:
 o Broad upstream, convective-diffusive, preheat zone, subject to b. c. at $\tilde{x} = -\infty$ only. No downstream b. c.
 o Thin reactive-diffusive zone, without any b. c.
 o Broad downstream, equilibrium zone.

• Partial solutions determined to leading order of reaction sheet ($Ze \to \infty$) and next order of broaden reaction zone ($Ze >> 1$, but finite)

• Asymptotically match these partial solutions to determine the various boundary conditions, hence completing the solutions
Structure Equation for Inner, Reaction Zone (1/2)

• Define inner “stretched” variable and inner solution for reaction zone as

\[
\chi = \tilde{x} / \varepsilon = O(1) \quad \tilde{T}_{in}(\chi) = \theta_o - \varepsilon \theta_1(\chi) + O(\varepsilon^2)
\]

• Then G.E. becomes

\[
- \frac{d^2 \theta_1}{d \chi^2} + \varepsilon \frac{d \theta_1}{d \chi} = - \left(\varepsilon^2 Le Da^o \right) \theta_1 e^{-\varepsilon Ze \theta_1}.
\]

• Observations:
 o Diffusion term: \(O(1)\); Convection term: \(O(\varepsilon)\)
 o To retain exponential nonlinearity essential to chemical reaction: \(\varepsilon Ze \sim O(1) \Rightarrow \varepsilon \sim Ze^{-1}\) identified
 o For reaction term to be \(O(1)\) in order to balance diffusion term:

\[
\varepsilon^2 Da^o \sim O(1) \Rightarrow Da^0 \sim \varepsilon^{-2}
\]

 o \(\varepsilon^2\): one \(\varepsilon\) from thin zone, one \(\varepsilon\) from reduced concentration
Structure Equation for Inner, Reaction Zone (2/2)

- Final structure equation:
 \[\frac{d^2 \theta_1}{d \chi^2} = \frac{\Delta^o}{2} \theta_1 e^{-\theta_1}, \quad \Delta^o = \frac{2LeDa^o}{Ze^2}. \]
 (7.5.44,45)

- Solution:
 \[\frac{d}{d \theta_1} \left(\frac{d \theta_1}{d \chi} \right)^2 = \Delta^o \theta_1 e^{-\theta_1} \]
 (7.5.16)

 Integrating with b. c.: \(\theta_1 = d \theta_1 / d \chi = 0 \) at \(\chi \to \infty \)

 \[\left(\frac{d \theta_1}{d \chi} \right)^2 = \Delta^o \int \theta_1 e^{-\theta_1} d \theta_1 + c_{in} = -\Delta^o (1 + \theta_1) e^{-\theta_1} + c_{in}. \]
 (7.5.47)

 Evaluating at \(\chi \to \infty \)

 \[\lim_{\chi \to -\infty} (1 + \theta_1) e^{-\theta_1} = \lim_{\chi \to -\infty} \left[1 - (c_1^- + \chi) \right] e^{(c_1^- + \chi)} = 0 \]
 (7.5.48)

 Final result: \(\Delta^o = 1 \)

 In physical terms:

 \[(f^o)^2 = \frac{2(\lambda / c_p) B_c}{Ze^2} e^{-T_a / T_b^o} \]

 Phenomenological derivation only missed the term \(2Le / Ze \)
Dependence on T_{ad}

- Correlates well with T_{ad} through heat of combustion
 - Equivalence ratio
 - C/H ratio
Dependence on Le

- More rigorous derivation shows $(f^o)^2 \sim Le$
 - Concentration effect
 - $T_f \equiv T_{ad}$ is not affected for the standard flame, hence weak effect; exaggerated for hydrogen ($Le_{lean} \approx 0.3$, $Le_{rich} \approx 2.3$)
 - Effects are more significant for stretched flames for which T_f is affected
Dependence on Molecular Structure

- Flame speed increases with ethane (C_2H_6), ethylene (C_2H_4), and acetylene (C_2H_2).

Air as oxidizer

Modified air to match T_{ad}

![Graphs showing laminar flame speed (S_f) vs. equivalence ratio (ϕ) for different fuels under different air conditions.](image-url)
Dependence on Pressure

- Dependence of flame speed on pressure is through
 - Chemistry
 - Density
- Observed decreasing trend of flame speed with pressure is density effect, not chemistry effect
- f^o is the proper parameter because it is only affected by chemistry
- f^o usually increases with increasing pressure
Dependence on Transport Properties

• Flame speed can be manipulated through inert substitution, while keeping oxygen mole fraction fixed
 o N_2 and Ar have similar molecular weights and hence diffusivities, but different c_p, which affects the flame temperature.
 o Ar and He have the same c_p but different diffusivities and densities
Extraction of Global n and E_a

\[n = 2 \left(\frac{\partial \ln f^o}{\partial \ln p} \right)_{T_{ad}}. \]

\[E_a = -2 R^o \left[\frac{\partial \ln f^o}{\partial (1/T_{ad})} \right]_p. \]

- Results demonstrate the role of pressure on two-body branching (promoting with pressure) and three-body termination (retarding with pressure) reaction
- Note: possible $n < 0$
Chemical Structure of Flames
Asymptotic versus Chemical Structure

- Asymptotic Structure
 - Broad, convective-diffusive, nonreactive zone followed by:
 - Narrow, diffusive-reactive zone at downstream end of flame
 - One-step overall reaction accounts for both activation and heat release
 - Chemical activation is thermal in nature
Asymptotic versus Chemical Structure

• Chemical Structure (with chain mechanism)
 o Termination reaction is temperature insensitive ⇒ can occur in upstream diffusive zone ⇒ reactions take place throughout entire flame structure
 o Termination reactions can be highly exothermic ⇒ substantial heat release in preheat zone
 o Chemical activation through radicals produced at downstream, high-temperature end that back diffuse to the preheat zone
 o In homogeneous system initiating radicals are produced by original fuel-oxidizer species.
Premixed H$_2$-Air Flame: Diffusive Structure

- H$_2$ diffusion layer is thicker than those of O$_2$ and heat (T) because of its high diffusivity.

- Rapid reduction in H$_2$ concentration (due to diffusion, not reaction) causes a bump in mole fraction of O$_2$. This is not physical, just definitional (on mole basis)
Chain Structure

- **Active reaction zone:** 0.04 cm to 0.1 cm; two zone structure

- **Trailing, H production zone**
 - $\text{O} + \text{H}_2 \rightarrow \text{OH} + \text{H}$; $\text{OH} + \text{H}_2 \rightarrow \text{H}_2\text{O} + \text{H}$
 - H back diffuses

- **Leading, H consumption zone**
 - Back-diffused H reacts with O$_2$ at low temperature through $\text{H} + \text{O}_2 + \text{M} \rightarrow \text{HO}_2 + \text{M}$.
 - HO$_2$ subsequently forms H$_2$O$_2$,
 - Contrasts with $\text{H}_2 + \text{O}_2 \rightarrow \text{HO}_2 + \text{H}$ in homogeneous system.

- **Maximum consumption rates of** $\text{H}_2:\text{O}_2 = 2:1$; occurring at same location

- **H$_2$O generated through entire reaction zone.**
Thermal Structure

- Major exothermic reactions
 - H consumption layer,
 \[\text{H} + \text{O}_2 + \text{M} \rightarrow \text{HO}_2 + \text{M} \]
 - H production layer
 \[\text{OH} + \text{H}_2 \rightarrow \text{H}_2\text{O} + \text{H} \]
- Major endothermic reaction
 - H+O\(_2\)→OH+O
 which is the major branching step
- Maximum heat release occurs at 800 K!
- 30% heat released in H consumption layer, at 1000 K
- Chemical activation, indicated by maximum H production rate, occurs around 1400 K.
Summary of Contrasts with Asymptotic Structure

• Important reactions occur throughout flame structure

• H radical needed for initiation at leading edge is produced in the downstream and back diffuses

• Maximum heat release occur at front of the active reaction zone

• Substantial heat evolved in the moderately low temperature region of the flame
2. Limit Phenomena
Concepts of Ignition & Extinction

- **Thermal runaway**: Feedback loop involving nonlinear Arrhenius heat generation and linear heat loss
- **Radical runaway**: Radical proliferation through chain branching
- **Unsteady (ignition) analysis**: Tracking the temporal evolution of a reacting mixture upon application of ignition stimulus
- **Steady, S-curve analysis**: Identify states at which steady solution does not exist for a non-reacting situation, signaling ignition, or a strongly burning situation, signaling extinction
- **Ultimate (extinction) consideration**: system adiabaticity
Principle of Well-Stirred Reactor

- In steady-state operation:

\[
\dot{V} \rho_o c_p (T_f - T_o) = V Q_c B c_F e^{-T_a/T_f} \\
\tilde{T} - \tilde{T}_o = D a_c (T_{ad} - T_f) e^{-\tilde{T}_a/\tilde{T}_f},
\]

\[
D a_c = \frac{B}{V/V} = \frac{\text{Characteristic flow time}}{\text{Characteristic collision time}}
\]

- Using:

\[
\tilde{T} = \tilde{T}_{ad} - \tilde{c}_F
\]

- Solutions:

1: Weakly-reactive state
2: Strong-burning state
I: Ignition state
E: Extinction state
3: Triple solution \(\Rightarrow\) nonmonotonicity and hysteresis
Concept of S-Curve

• Ignition/extinction turning points defined by

\[
\left(\frac{d \ln D a_c}{dT_f} \right)_{cr} = 0
\]

• (8.1.23) yields the two roots

\[
\tilde{T}_{f, cr} = \frac{(\tilde{T}_{ad} + \tilde{T}_o) \pm \{1 - 4(\tilde{T}_o \tilde{T}_{ad} / \tilde{T}_a)\}^{1/2}}{2(1 + 1 / \tilde{T}_a)}
\] \hspace{1cm} (8.1.29)

• Folding possible when \{\cdot\} > 0 in (8.1.29). Otherwise S-curve is stretched for:
 o Low activation energy reactions
 o High initial temperatures
Premixed Flame Extinction (through Heat Loss) (1/3)

• The standard flame, being adiabatic, does not exhibit any extinction behavior, i.e. finite f^o for finite Y_u.

• Heat loss lowers flame temperature from T_{ad}, leading to abrupt extinction, at finite Y_u. System becomes non-conservative.

• Radiation from flame is an inherent heat loss mechanism.

• Assume loss occurs only in the preheat zone, and with L being a loss coefficient, then amount of loss is

$$ q^- = \int_0^\ell L \, dx \approx \ell D L \approx \frac{\lambda}{c_p} \frac{L}{f} $$
Premixed Flame Extinction (2/3)

- Overall energy conservation

 \[f c_p (T_{ad} - T_u) = f c_p (T_f - T_u) + \frac{\lambda / c_p}{f} L . \]
 \[T_f = T_{ad} (1 - \frac{\lambda / c_p^2}{f^2 T_{ad}} L) = T_{ad} (1 - L' / f^2) \]

- In analogy to standard flame result

 \[(f^o)^2 = \frac{(\lambda / c_p) w^o}{Z e} ; \quad w^o = \exp(-E_a / R^0 T_{ad}) \]

 we can write

 \[(f)^2 = \frac{(\lambda / c_p) w}{Z e} ; \quad w = \exp(-E_a / R^0 T_f) \]

- Using (8.4.4’) in \(w \)

 \[\dot{w} \sim \exp[(-(E_a / R^0) / (1 - L' / f^2))] = \exp(-E_a / R^0) \exp(-\dot{L} / f^2) \]
 \[\dot{L} = (E_a / R^0) L' \]
Premixed Flame Extinction (3/3)

- C/B using D:
 \[\tilde{f}^2 = \left(\frac{f}{f^0} \right)^2 = w / w^0 = \exp\left(-\tilde{L} / \tilde{f}^2\right), \]

 from which \[\tilde{f}^2 \ln \tilde{f}^2 = -\tilde{L}. \] (8.4.9)

- (8.4.9) is the generalized equation governing flame propagation with loss.

 - For \(\tilde{L} = 0, \tilde{f} = 1, f = f^0 \)

 - Extinction, turning point:
 \[\left(\frac{dL}{df^2} \right)_x = 0 \]

 - Solving:
 \[\tilde{L}_E = e^{-1}, \tilde{f}_E = e^{-1/2} \]
Other Limit Phenomena

- Flammability Limits:
 - For given mixture temperature and pressure, the leanest and richest concentrations beyond which flame propagation is absolutely not possible
 - Set the ultimate boundaries for extinction

- Blowoff and Flashback
 - Consequence of lack of dynamic balance between flame speed and flow speed
 - Has nothing to do with extinction and ignition
Flammability Limit

- Simulation for methane/air mixtures shows
 - Extinction $\phi = 0.493$
 - empirical: $\phi = 0.48$
 - $f/f^o = e^{-1/2} \approx 0.6$
 - $(T_f)_{ext} \approx 1,450$ K

- Extinction temperature result corroborates with the concept of limit temperature for hydrocarbon fuels
Stabilization Mechanism of Premixed Flame at Burner Rim

- Gas stream
- Profile of gas velocity u_v
- $s_u < u_u$
- Combustion wave
- $s_u = u_u$
- $s_u > u_u$
- Solid rim
- Open atmosphere
Triple-Flame Stabilization Mechanism of Nonpremixed Flame at Burner Rim
3. Aerodynamics of Laminar Flames
Standard Flame vs. Real Flame (1/2)

Hydrodynamic Limit

Reaction-Sheet Limit
Standard Flame vs. Real Flame (2/2)

• Standard 1D Planar Flame
 - \(f^o = f^o(q_c, Le_{i,j}, w_k) \)
 - System is conservative, \(T_b^o = T_b^o(q_c) \)
 - \(f^o \sim \sqrt{Le_{i,j}} \)

• General Stretched Flame
 - \(f = f(q_c, Le_{i,j}, w_k; Ka, L) \)
 - \(Ka \): Karlovitz number, representing aerodynamic effects of flow nonuniformity, flame curvature, flame/flow unsteadiness
 - \(L \): Generalized loss parameter
 - System could become locally or globally nonconservative
 - \(T_b = T_b(q_c, Le_{i,j}, w_k; Ka, L) \)
 - \(O(\varepsilon) \) modification of flame temperature leads to \(O(1) \) change in flame speed \(\Rightarrow \) locally intensified burning or extinction
The Stretch Rate

- Definition: Lagrangian time derivative of the logarithm of area A of a surface

$$\kappa = \frac{1}{A} \frac{dA}{dt}$$

$$A(p,q,t) = (e_p dp) \times (e_q dq) = (dp dq)n$$

- Letting

$$v_{f,t} = v_{s,t}$$

$$\kappa = \nabla_t \cdot v_{s,t} + (V_f \cdot n)(\nabla \cdot n)$$

$$v_{s,t} = n \times (v_s \times n)$$

- Sources of stretch:
 - Flow nonuniformity: v_s
 - Flame curvature: n
 - Flame oblique to flow: $v_s \times n \neq 0$.
 - Flame unsteadiness ($V_f \neq 0$), with curvature $\nabla \cdot n \neq 0$
Examples of Stretched Flames

- **Stagnation Flame:** \(v = \left\{ \frac{a}{(k+1)} x, -a y, 0 \right\}, \kappa = a > 0 \)

- **Expanding Spherical Flame:** \(\kappa = \frac{2}{R_f} \frac{dR_f}{dt} > 0 \)

- **Bunsen Flame:** \(\kappa = \frac{w \sin 2a}{2R_f} < 0 \)

- Each of above has its opposite analog
Effects of Stretch (1/2)

• Hydrodynamic stretch: Flame-sheet limit
 o **Tangential velocity gradient**: changes flame surface area and hence total burning rate, $\int f \, dA$
 o **Normal velocity**: Balances flame speed
 o **Net effect**:
 Distortion of flame geometry
 Modifies total burning rate (e.g. higher burning rate in turbulent flame through surface wrinkling)
Effects of Stretch (2/2)

- Flame stretch: reaction-sheet limit
 - Tangential velocity affects normal mass flux f_b entering reaction zone
 - For $Le\neq 1$, modifies temperature and concentration profiles differently \Rightarrow modifies total enthalpy and flame temperature
 \Rightarrow locally non-conservative

- Hydrodynamic stretch and flame stretch strongly coupled

- Stretch (i.e. convection) in thin reaction zone is unimportant
Example of Hydrodynamic Stretch: Corner Formation in Landau Propagation

- Landau propagation: \(s_u = s_u^o \)
- Concave segment develops into a corner; convex segment flattens
- Positive curvature and hence stretch dominate
- Mathematically described by Burgers equation, similar to that for shock formation

Flame Evolution with \(f_\theta(\hat{x}) = -\cos \hat{x} \)
Flame Stretch due to Flow Straining: The Stagnation Flame (1/2)

- Stretch is positive, $\kappa > 0$; situation reversed for $\kappa < 0$
- Consider total energy conservation in control volume
 - Diffusion: normal to reaction sheet
 - Convection: along (divergent, $\kappa > 0$) streamline
- $Le > 1$: More heat loss than reactant mass gain \Rightarrow system sub-adiabatic
- With increasing κ:
 - Flame temperature decreases, until extinction
 - Flame at finite distance from stagnation surface at extinction
 - Complete reactant consumption at extinction
The Stagnation Flame (2/2)

- $Le < 1$: More reactant mass gain than heat loss \Rightarrow system super-adiabatic

- With increasing κ:
 - Flame temperature increases, extinction not possible as long as the flame is away from surface
 - Eventually flame is pushed to the stagnation surface, leading to incomplete reaction and eventually extinction
Flame Stretch due to Flame Curvature: The Bunsen Flame

- For the concave flame curvature, $\kappa < 0$; expect opposite response from the $\kappa > 0$ stagnation flame
- (Negative) flame curvature focuses heat and defocuses mass in the diffusion zone
 - $Le > 1$: Super-adiabatic, burning at flame tip intensified relative to shoulder
 - $Le < 1$: Sub-adiabatic, burning at tip weakens, lead to extinction (i.e. tip opening)
Flame Stretch due to Flame Motion: the Unsteady Spherical Flame

- For the expanding flame, $\kappa > 0$; expect similar behavior as the stagnation flame.

- An increase in flame radius R_f by δR_f leads to an increased amount $(4\pi R_T^2 \delta R_f)$ of heat transferred to the preheat zone, and $(4\pi R_M^2 \delta R_f)$ of mass transferred.
 - $Le > 1$: Sub-adiabatic, more heat transferred away
 - $Le < 1$: Super-adiabatic, less heat transferred away

- Stretch rate, $\kappa = \left(\frac{2}{R_f}\right)(dR_f/dt)$
 continuously decreases
 with increasing R_f
 approaching the planar limit
Analysis (1/2)
(Based on Stagnation Flame Analogy)

• Energy loss/gain in control volume

\[f_u c_p (T_{ad} - T_f) = (\lambda \frac{T_f - T_u}{\ell_T}) - (q_c \rho D \frac{Y_u}{\ell_M}) \frac{\kappa}{s_u / \ell_T} \]

- Normal heat flux; loss
- Normal chemical energy flux; gain
- Fraction of flux diverted out of control volume due to stretch

• In nondimensional form

\[\tilde{T}_{ad} - \tilde{T}_f = -Ka^0 \frac{Le^{-1} - 1}{f^2} = -S^0 / \tilde{f}^2 \]

(A)

- \[S^0 = Ka^0 (Le^{-1} - 1) \]
- Karlovitz number, \[Ka^0 = \kappa / (s_u^0 / \ell^0_T) \]; nondimensional stretch rate
Analysis (2/2)

- Following same analysis as that for premixed flame with heat loss, yields

\[\frac{f_u^2}{\tilde{f}_u^2} \ln \frac{f_u^2}{\tilde{f}_u^2} = \sigma^o, \quad \sigma^o = Ze^o S^o = Ze (Le^{-1} - 1) Ka^o \]

- \(-\sigma^o\) has the same role as \(L\) in (8.4.9), showing extinction for \(\sigma < 0\) (i.e. loss due to stretch)

- Further define **Markstein number** as

\[Ma^o = Ze^o (Le^{-1} - 1) \]

- Then: \(\sigma^o = Ma^o Ka^o\)
Response of Stretched Flame

- From (A): $T_f(>,<) T_{ad}$ for $S^o(,<,>)0$
 Since $S^o=(Le^{-1}-1)Ka^o$, influence is lumped for nonequidiffusion and stretch.

 $T_f > T_{ad}$ for $(Ka^o > 0, Le < 1)$ or $(Ka < 0, Le > 1)$
 $T_f < T_{ad}$ for $(Ka^o > 0, Le > 1)$ or $(Ka < 0, Le < 1)$
 $T_f \equiv T_{ad}$ for either $Ka^o = 0$ ($Le \neq 1$) or $Le = 1$ ($Ka \neq 0$)

- Super-lumped parameter for flame speed:

 $\sigma^o = Ze^o(Le^{-1}-1)Ka^o$:
 Reactivity \times nonequidiffusivity \times stretch

- Markstein number, $Ma^o=Ze^o(Le^{-1}-1)$:
 Reactivity \times nonequidiffusivity; a property of the mixture.
Results on Stretched Equidiffusive Flame

- Stretched flame ($\kappa \neq 0$) for equidiffusive mixture ($Le = 1$) is not affected by stretch:

$$S^0 = (Le^{-1} - 1)\kappa \equiv 0$$
Nonequidiffusive Mixtures

<table>
<thead>
<tr>
<th>Mixture for Simulation</th>
<th>$Le \neq 1$ Interpretation</th>
<th>$D_i \neq D_j$ Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lean hydrogen–air</td>
<td>$Le_{H_2} < 1$</td>
<td></td>
</tr>
<tr>
<td>Lean methane–air</td>
<td>$Le_{CH_4} < 1$</td>
<td></td>
</tr>
<tr>
<td>Rich propane–air</td>
<td>$Le_{O_2} < 1$</td>
<td>$D_{H_2} > D_{CH_4} > D_{O_2} > D_{C_3H_8}$</td>
</tr>
<tr>
<td>Rich hydrogen–air</td>
<td>$Le_{O_2} > 1$</td>
<td></td>
</tr>
<tr>
<td>Rich methane–air</td>
<td>$Le_{O_2} > 1$</td>
<td></td>
</tr>
<tr>
<td>Lean propane–air</td>
<td>$Le_{C_3H_8} > 1$</td>
<td></td>
</tr>
</tbody>
</table>
Results on Stretched Nonequidiffusive Flame

(a) Counterflow flame
(b) Outwardly propagating flame
(c) Inwardly propagating flame
Flame Images

\[\kappa > 0 \]

(a) Lean methane-air: \(Le < 1, S^o > 0 \)

(b) Rich methane-air: \(Le > 1, S^o < 0 \)

(c) Lean propane-air: \(Le > 1, S^o < 0 \)

(d) Rich propane-air: \(Le < 1, S^o > 0 \)

\[\kappa < 0 \]
Further Implications of Stretched Flame Phenomena

- Determination of laminar flame speeds
- Concentration and temperature modifications in flame chemistry
- Flame stabilization and blowoff
Flame Front Instabilities (1/2)

Diffusional Thermal Instability

Hydrodynamic Instability (Flame sheet, constant flame speed; density jump)
Flame Front Instabilities (2/2)

Diffusional-Thermal
Le<1 Le>1

DL Diffusional-Thermal Le>1 Le<1

DL
Le>1
Closing Remarks of Day 4 Lecture (1/2)

• The standard premixed flame
 o **Concepts introduced**: asymptotic analysis; cold boundary difficulty; distinguished limit; flame structure based on one-step and detailed chemistry; extraction of global kinetic parameters

• Further studies:
 o Need chemical structure of hydrocarbon flames
 o Explain the lack of influence on laminar flame speed by: (a) low-temperature chemistry, and (b) molecular size for large n-alkanes
 o Is it possible to derive a semi-empirical expression for the laminar flame speed based on T_{ad} and extracted global kinetic parameters?
Closing Remarks of Day 4 Lecture (2/2)

- **Limit phenomena**: Extinction is due to insufficient reaction time while flame blowoff/out is due to imbalance between flame and flow speeds
- Extinction is in general caused by enthalpy loss in the preheat zone, leading to $O(\varepsilon)$ reduction in flame temperature and $O(1)$ reduction in flame speed
- Need to distinguish flame stabilization by auto-ignition or flame holding
- **What is the fate of a freely-propagating flame to increasing strength of imposed strain rate?**
- Need detailed study of the chemical structure of stretched flames
! Daily Specials !
1. Low-temperature, NTC flames
2. Pulsations in premixed and diffusion flames:
 a. Extinction
 b. Spiral patterns
3. Pulsation in self-propagating high-temperature synthesis
1. Low-temperature, NTC Flames
The Issue

- NTC behavior observed for homogeneous mixtures in low- to intermediate-temperature range

- NTC behavior not observed in extensive counterflow experiments & simulations
 - Finite residence time shifts ignition temperature to >1000K, hence moves ignition chemistry out of the NTC regime
 - Can NTC behavior be manifested for:
 - Low strain rate flows?
 - High pressures?
NTC Behavior Predicted at Low Strain Rates!

Pressure: 1 Atm.

1 atm, \(k = 200/s \)

1 atm, \(k = 100/s \)
NTC Behavior Exaggerated with Increasing Pressure

At lower pressures, ignition occurs in two stages, final ignition controlled by high-temperature chemistry.

At higher pressures, ignition occurs in one stage, controlled by low-temperature chemistry.
Experimental Observation of Nonpremixed LTC Flame

Infrared Images at Ignition
(1 atm, strain rate: 60/s)

A: Air vs DME
B: N₂ vs DME
C: Ignition (Air vs DME)
D: Ignition (N₂ vs DME)

- Detailed chemical structure study shows that such flames are governed by LTC
Experimental Observation of Premixed LTC Flame

- Different behavior from hot flames
- Insensitive of flame location, implying small variation in flame speed with Φ variation
- Stronger chemiluminescence for richer cases
2a. Pulsating Extinction of Premixed and Diffusion Flames
The Issue: Heightened Sensitivity Near Extinction

- S-curve analysis is based on steady-state considerations, showing on-off states.
- Near state of extinction, the burning intensity of flame is reduced, implying larger effective activation energies.
- Flamefront pulsating instabilities are also promoted with increasing activation energy.
- Could extinction occur in a pulsating manner, especially for $Le > 1$ flames?
The Issue: Intrinsic Chemical Influence Near Diffusion Flame Extinction

- Finite-rate chemistry plays no role in the reaction-sheet limit of diffusion flames
- Flamefront (pulsating) instability intrinsically requires consideration of finite-rate chemistry
- Since finite-rate chemistry is responsible for extinction, then could extinction occur in a pulsating manner even for diffusion flames, if \(Le > 1 \) for one of the reactants?
Oscillatory Extinction of $Le > 1$

Premixed Flame

Calculated S-curve, showing earlier extinction due to pulsation

Calculated extinction dynamics; extinction controlled by steady-state extinction temperature

Experimental observation of oscillatory luminosity
Oscillatory Extinction of Diffusion Flames: Computation

Calculated S-curve, showing earlier extinction due to pulsation

Calculated extinction dynamics; extinction controlled by steady-state extinction temperature
Oscillatory Extinction of Diffusion Flames: Experiment

Steady and oscillatory extinction of diffusion flames experimentally observed
2b. Observations of Spirals over Flame Surfaces
Target Patterns ($Le > 1$)

Experimental conditions:
• Lean butane-air, $\phi = 0.59$
• 30 atm. pressure
• Consecutive frames at framing rate of 15000 fps
• Frame dimension: $2.73\text{cm} \times 5.46\text{cm}$
• Rich hydrogen-air flame ($\phi = 4.30$) at 20 atm.
• Spirals confined within hydrodynamic cells
• Spiral can be either clockwise or counter-clockwise
Magnified View of the Spirals
Disordered Spirals

- Hydrogen-oxygen flame at 30 atm. and $\phi = 6.00$
- Disordered spirals
3. Pulsation in Self-propagating High-temperature Synthesis
Pulsation in Condensed-Phase Flames

- A curious result:
 - Propagation of solid flames exhibit temperature-sensitive Arrhenius behavior, e.g. pulsation
 - But reaction for individual particles is in diffusion flame-sheet limit ⇒ no finite rate chemistry

Laminated product structure due to pulsation
Pulsation in Condensed-Phase Flame

- Explanation: Arrhenius behavior from temperature-sensitive solid-phase diffusivity

- Gas-phase flame speed: \(f_{\text{gas}}^2 \sim (\rho D)_g \omega \sim (\rho D)_g e^{-T_a/T_{ad}} \sim e^{-T_a/T_{ad}} \)

- Condensed-phase flame speed:

\[
f_{\text{SHS}}^2 \sim (\rho D)_s \omega_{\text{SHS}} \sim (\rho D)_s K_c
\]

Since \(K_c = (2 \rho_B D / \rho_A)_s \ln(1 + Y_B / \sigma_O) \sim D_s \) \(\Rightarrow f_{\text{SHS}}^2 \sim D_s^2 \)

But \(D_s \sim e^{-T_d/T} \), therefore: \(f_{\text{SHS}} \sim e^{-T_d/T_{ad}} \)