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Flashback and Flameholding 
• Flashback: 

– Upstream propagation of a premixed flame into a region not 
designed for the flame to exist 

– Occurs when the laminar and/or turbulent flame speed exceeds 
the local flow velocity 

• Reference flow speed and burning velocity?  

• Flameholding: 
– Flame stabilizes in an undesired region of the combustor after a 

flashback/autoignition event 

– Problem has hysteretic elements 

• Wall temperature effects 

• Boundary layer and swirl flow stability effects   
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Flashback and Flameholding 
Mechanisms 

• Flashback in the boundary layer  
• Flame propagation into core flow 

– We’ll focus on swirl flows 

• Combustion instabilities 
– Strong acoustic pulsations lead to nearly reverse flow 

• Note: p’/p~u’/c=Mu’/u 
• i.e. u’/u=(1/M)p’/p 

• Significance of above mechanisms is a strong function 
of: 

– Fuel composition 
– Operating conditions 
– Fluid mechanics 

Kröner et al. CST 2007 

Heeger et al. 
Exp. In Fluids 

2010  

Show video 
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• Neglects effects of 
– Heat release (changes approach flow) 
– Stretch (changes burning velocity) 

• Flashback occurs if flame 
speed exceeds flow velocity at 
distance,    , from the wall 
 
 
– Expanding velocity in a Taylor series, 

establish flashback condition: 
 
 

 
 

– Assuming,           , define flashback Karlovitz 
number 
 

 

Boundary Layer Flashback-Classical 
Treatment 
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• Flashback Karlovitz 
number approach is 
well validated for open 
flames, such as 
Bunsen burners 
– Performed detailed kinetics 

calculations to determine flame 
speed and thickness for several 
data sets 

– Shows how prior burning 
velocity, flame thickness 
tendencies can be used to 
understand tendencies 

• Pressure 
• Preheat temperature 
• Stoichiometry 

Boundary Layer Flashback 
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CH4-air (solid)  and C3H8-air (dashed) 

Data for figures obtained from: 
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• Turbulent Boundary 
Layers 
– Multi-zoned 

• Near wall laminar 
sublayer,  

– Basic scaling developed for 
laminar flows holds if: 
 

– Most literature data shows 
 

– Significant space-time 
variation during flashback 

• Images suggest flame 
interactions with boundary 
layer instabilities  

Boundary Layer Flashback 

C. Eichler Exp. In Fluids 2012  

, ,3u turbulent u laminarg g

Show video 
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Coupled Effects of Flame Curvature 
and Gas Expansion 

• Flame bulging into 
reactants 
– Approach flow decelerates 
– Streamlines diverge 
– Adverse pressure gradient 

• Implications: 
– Boundary layers – adverse 

pressure gradients lead to 
separation 

– Swirl flows – adverse 
pressure gradients can lead 
to vortex breakdown 

– Triple flames – flame can 
propagate into region with 
velocity that is higher than 
flame speed 

– Flame stability – flame 
spontaneously develops 
wrinkles 
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Heat Conduction Influences on 
Boundary Layers 

• Important implications for  
– Scaling velocity gradients in shear layers 
– Flame stretch rates 
– Shear layer instability frequencies – acoustic sensitivities 
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• Heat release modifies 
approach flow 
 

• Stretch modifies 
burning velocity 

Heat Release and Stretch Effects 

Unconfined Confined 

Inner lip 
C. Eichler Turbo Expo 2011  
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Heat Release and Stretch Effects 
• Particularly important in 

explaining flameholding 
phenomenon 
 

• Once a flashback event has 
occurred, difficult to expel 
flame from combustor 
 

• Leading point of advancing 
flashback event subject to 
positive curvature  
 

• Effect of gas expansion due 
to heat release on local flow 
velocity 
 

C. Eichler Turbo Expo 2011  
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• Leading point of advancing 
flashback event subject to 
positive curvature 
– For             , this can cause: 

 
 

•        can be a significant 
underestimate of flame 
speed 

Stretch Effects 
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Heat Release Effects 
• Gas expansion across 

a curved flame alters 
the approach flow 
– Resulting adverse 

pressure gradient ahead 
of flame decelerates flow 

• In extreme cases, can 
cause boundary layer 
separation 

• Approach flow “sucks” 
flame back into nozzle 

Figures: 
C. Eichler Turbo Expo 2011 
Heeger et al. Exp. In Fluids 2010 
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• The degree of swirl in 
the flow, S, has profound 
influences on the flow 
structure 

• Most prominent feature 
of high swirl number 
flows is the occurrence 
of “vortex breakdown”, 
which is manifested as a 
stagnation point followed 
by reverse flow 

Flow Stability and Vortex Breakdown 

Stagnation
points

Billant et al., JFM, 1998 
Sarpkaya, JFM, 1971 
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Prominent Features of Swirling Flows 
 with Vortex Breakdown: Precessing Vortex Core 

• The flow does not 
instantaneously rotate 
about the geometric 
centerline 

• The location of zero 
azimuthal velocity is 
referred to as the 
“precessing vortex core” 
(PVC) 

– The frequency of rotation of the 
precessing vortex core scales with 
a Strouhal number based on axial 
flow velocity and diameter 

– Leads to a helical pattern in 
instantaneous axial flow velocity 

– Important to differentiate the PVC 
from the other helical shear flow 
structures which may also be 
present 

 Source: Syred, Prog. Energy and Comb. Sci., 2006 
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• Shear layers exist in both span- and streamwise directions 
– Can be axisymmetric or helical 

 

Prominent Features of Swirling Flows: 
 Shear Layer Instability 

Huang and Yang, Proc. Comb. Inst., 2005 
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• Vortex breakdown can 
be described as a 
“fold catastrophe” 
– Bifurcation of the possible 

steady state solutions to the 
Navier-Stokes equations 

• In high Re flows, there 
is an intermediate 
swirl number range 
where flow is bi-stable 
and hysteretic 
– i.e., either vortex breakdown or 

no vortex breakdown flow state 
possible 

 

Flow Stability and Vortex Breakdown 

Source: Lopez, Physics of Fluids, 1994 
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• Vortex breakdown can be predicted for given velocity profile 
– “Q-vortex" velocity profile: 

      
 

      
      
 

Flow Stability and Vortex Breakdown: 
Example calculation 
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Flow Stability and Vortex Breakdown: 
Example Calculation 
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Core Flow Flame Propagation 

• Vortex breakdown – flame interaction 
– Can occur even if flame speed everywhere less than flow speed 
– Gas expansion across a curved flame: 

1.  Adverse pressure gradient & radial divergence imposed on reactants 
2. Low/negative velocity region generated upstream of  flame 
3. Flame advances further into reactants 
4. Location of vortex breakdown region advances upstream 

– Due to bi-stable nature of vortex breakdown boundaries 
• CIVB itself not necessarily bi-stable 
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Image reproduced from T. Sattelmayer 
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