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4 Introduction & Motivation

x Currentchemicalmodelsfor combustionconsistof kinetic datafor thousandf reactions Thesemodelsare validatedthroughdetailedcomparisonsvith wide rangingexperimentalbbservationf flame

properties Unfortunately,muchof the validationdatais for low pressurese.g., 1 bar), whereascombustiondevicesare generallyoperatingat muchhigherpressurege.g., 100 bar for manyadvancedengine
concepts)

X Recentstudieshavedemonstratedreatshortcomingsor eventhe bestchemicalmodelsat high pressureThe CEFRCis addressingheseshortcomingshroughthe generatiorof wide-rangingvalidationdataat
significantly higherpressuresandthe useof this datain the developmenof improvedchemicalmodels In particular,we aredevelopingandapplyingmethoddor studyingignition, propagationandextinction

In stagnatiorand sphericallyexpandingflame configurations flame propertiesfor turbulentflames,ignition delaysand multi-speciegime historiesin both rapid compressiomimmachinesand shocktubes,and
elementaryatecoefficientsin shocktubes

x All of thesemeasurementarebeingperformedfor pressuresangingup to 20 to 40 bar, with aninitial focuson butanolcombustiomasa key prototypicalbiofuel. The combinationof modelingandtheoretical
reactionkineticsis beingusedto improvethe chemicalmodelfor butanolcombustiorthroughcarefultheoreticaktudiesof the key chemicalreactionsasindicatedby the modeling
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Effects of increasing pressure on the structure &
propagation of turbulent flames:
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Pressure: 1atm Pressure: 5atm Conclusions

Current mechanisms have great uncertainties at the high pressures typical of combustion devices.

A At high pressures the H +,0hain branching is taken over by stabilization to,l@d the chemistry of HO
becomes very important.

Developed and applied methods for measuring key combustion properties at pressuresd@piar2(

A Ignition, propagation, and extinction in stagnation and spherically expanding flame configurations, flame pragert
for turbulent flames, ignition delays and mtdpecies time histories in both rapid compression machines and shpck
tubes, and elementary rate coefficients in shock tubes.

We are using these properties to develop accurate chemical mechanisms for combustion of

1.Core fuels (H/H,CO/CH,0OH/CH,/C,H/C,H,/C,H,/CH;OCHj;, etc.).

. . . 2.Biofuels with an initial focus on butanols.
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