

Reciprocating Internal Combustion Engines

Prof. Rolf D. Reitz, Engine Research Center, University of Wisconsin-Madison

2012 Princeton-CEFRC
Summer Program on Combustion
Course Length: 9 hrs

(Wed., Thur., Fri., June 27-29)

Hour 6

This material is not to be sold, reproduced or distributed without prior written permission of the owner, Rolf D. Reitz.

Short course outine:

Engine fundamentals and performance metrics, computer modeling supported by in-depth understanding of fundamental engine processes and detailed experiments in engine design optimization.

Day 1 (Engine fundamentals)

Hour 1: IC Engine Review, 0, 1 and 3-D modeling

Hour 2: Turbochargers, Engine Performance Metrics

Hour 3: Chemical Kinetics, HCCI & SI Combustion

Day 2 (Spray combustion modeling)

Hour 4: Atomization, Drop Breakup/Coalescence

Hour 5: Drop Drag/Wall Impinge/Vaporization

Hour 6: Heat transfer, NOx and Soot Emissions

Day 3 (Applications)

Hour 7: Diesel combustion and SI knock modeling

Hour 8: Optimization and Low Temperature Combustion

Hour 9: Automotive applications and the Future

Engine Heat transfer

Up to 30% of the fuel energy is lost to wall heat transfer Can influence engine ignition/knock Engine durability – catastrophic engine failure

Scorching

Detonation

Cracking

Challen & Baranescu, 1998.

Heat Transfer

Gas phase energy equation

$$\frac{\partial(\rho I)}{\partial t} + \nabla \cdot (\rho \mathbf{u}I) = -p\nabla \cdot \mathbf{u} - \nabla \cdot \mathbf{J} + \rho \varepsilon + \dot{Q}^{c} + \dot{Q}^{s} + \dot{Q}^{r}$$

Radiation source term

$$\dot{Q}^{r}(\mathbf{r}) = \kappa \left[\int_{\Omega=4\pi} I(\mathbf{r}, \mathbf{\Omega}) d\mathbf{\Omega} - 4\pi I_{b}(\mathbf{r}) \right]$$

Wall heat flux (account for compressibility)

Han & Reitz, 1995

With radiation	Without radiation
$q_{w} = \frac{\rho_{g}C_{p}u^{*}T_{g}\ln(T_{g}/T_{w}) - (2.1y^{+} + 33.34)G\upsilon/u^{*}}{2.1\ln(y^{+}) + 2.5}$	$q_{w} = \frac{\rho C_{p} u^{*} T_{g} \ln \left(T_{g} / T_{w}\right)}{2.1 \ln \left(y^{+}\right) + 2.5}$
$\frac{dT}{dy} = \frac{q_w}{\rho_g C_p v} \left(\frac{2.1}{y^+} + 2.1G^+ \right)$	$\frac{dT}{dy} = \frac{2.1u * T_g \ln \left(\frac{T_g}{T_w}\right)}{\upsilon y^+ \left[2.1\ln \left(y^+\right) + 2.5\right]}$

G radiative heat flux = q_w^r

Radiation modeling

Wiedenhoefer, SAE 2003-01-0560

Radiation Transfer Equation:

$$(\mathbf{\Omega} \cdot \nabla) I(\mathbf{r}, \mathbf{\Omega}) = -(a_{net} + \sigma_s) I(\mathbf{r}, \mathbf{\Omega}) + \kappa I_b(\mathbf{r}) + \frac{\sigma_s}{4\pi} S(\mathbf{r}, \mathbf{\Omega})$$

 a_{net} net absorption coefficient, σ_s scattering coefficient

 $\kappa = a_{net} + \sigma_s$ extinction coefficient

Back body radiative flux (independent of angle) $I_b(\mathbf{r}) = \frac{\sigma T_w^4}{\pi}$

Scattering terms, σ_s , S ~ usually neglected compared to absorption

Radiation intensity at wall

$$G = q_w^r = \varepsilon \int_{\mathbf{n} \cdot \mathbf{\Omega}' < 0} |\mathbf{n} \cdot \mathbf{\Omega}'| I(\mathbf{r}, \mathbf{\Omega}') d\mathbf{\Omega}' - \varepsilon \sigma T_w^4$$

 ${\cal E}$ surface emissivity

Discrete ordinates model

$$\dot{Q}^{r}\left(\mathbf{r}\right) = \kappa \left[\sum_{m=1}^{nDir} \boldsymbol{\varpi}^{m} I^{m}\left(\mathbf{r}\right) - 4\pi I_{b}\left(\mathbf{r}\right)\right]$$

Soot and Gas Absorption

Total absorption coefficient

$$a_{net} = a_{soot} + a_{CO_2 + H_2O}$$

Soot absorption

$$a_{soot} = 1260C_{soot}T \text{ m}^{-1}$$

Wide band model for CO₂ and H₂O

$$\varepsilon_{b\eta} \left(\eta_{band\ center}, T \right) = \left(\frac{2C_1 \eta^3}{e^{C_2 \eta/T} - 1} \right)_{band\ center}$$

Importance of soot:

$$a_{gas} \propto \frac{1}{T}$$
 $a_{soot} \propto T$

$$a_{soot} \propto T$$

Wiedenhoefer, SAE 2003-01-0560

$$\begin{split} a_{g}\left(T,P,L_{e}\right) &= \frac{1}{L_{e}} \ln \left[1 - \varepsilon_{g}\left(T,P,L_{e}\right)\right] \\ \varepsilon &= 1 - \left(1 - \varepsilon_{fuel}\right) \left(1 - \varepsilon_{CO}\right) \left(1 - \varepsilon_{CO_{2}}\right) \left(1 - \varepsilon_{H_{2}O}\right) \end{split}$$

$$\dot{Q}^{r}(\mathbf{r}) = a \left[\int_{\mathbf{\Omega}=4\pi} I(\mathbf{r}, \mathbf{\Omega}) d\mathbf{\Omega} - 4\pi I_{b}(\mathbf{r}) \right] \propto \left[a_{gas} + a_{soot} \right] \sigma T^{4} \propto \sigma \left[T_{gas}^{3} + T_{soot}^{5} \right]$$

Wall heat transfer

Conjugate heat transfer modeling

ERC - Heat Conduction in Components code (HCC)

Unstructured HCC Mesh

Wiedenhoefer & Reitz, 2000

Wiedenhoefer & Reitz, 2000

CEFRC6 June 28, 2012

Predicted piston temperature - CDC

Wiedenhoefer & Reitz, SAE 2003-01-0560

Effect of radiation on wall heat loss

Total heat loss increased by 30% due to radiation.

34% - head, 19% - liner, 47% - piston. Lowers bulk gas temperatures Results in lower NOx and higher soot NOx reduced by as much as 30% (ave)

Engine emissions - Transportation & Toxic Air Pollutants

Criteria air contaminants (CAC), or criteria pollutants

- air pollutants that cause smog, acid rain and other health hazards.

EPA sets standards on:

- 1.) Ozone (O3),
- 2.) Particulate Matter (soot):
 PM10, coarse particles: 2.5 micrometers (μm) to 10 μm in size
 PM2.5, fine particles: 2.5 μm in size or less
- 3.) Carbon monoxide (CO), 4.) Sulfur dioxide (SO2),
- 5.) Nitrogen oxides (NOx), 6.) Lead (Pb)

Toxic air pollutants - Hazardous Air Pollutants or HAPs known to cause or suspected of causing cancer or other serious health ailments.

- Clean Air Act Amendments of 1990 lists 188 HAPs from transportation.

In 2001, EPA issued Mobile Source Air Toxics Rule:

- identified 21 MSAT compounds.
- a subset of six identified having the greatest influence on health: benzene, 1,3-butadiene, formaldehyde, acrolein, acetaldehyde, and diesel particulate matter (DPM).

Harmful effects on the central nervous system:

BTEX/N/S - benzene, toluene, ethylbenzene, xylenes, Naphthalene, Styrene

Diesel emission solutions

- Selective Catalytic Reduction (SCR) and Diesel Particulate Filter (DPF)

US EPA 2010 HD soot: 0.0134 g/kW-hr NOx: 0.2682 g/kW-hr.

1.) <u>EGR?</u>

Navistar – no SCR

<u>Enabling technologies (Cost?):</u>
Improved combustion bowl design - PCCI
Improved EGR valves, air-handling, VVA
Twin-series turbochargers, inter-stage cooling
High-pressure CR fuel injection (31,800 psi)

2.) <u>SCR?</u>

Cummins Cu-Zeolite with DEF for 2010

Claim 3-5% fuel economy gain (Class 8 truck 1% ≈\$1,000 per year)

"StableGuard Premix" dose rate ~2% of fuel consumption rate

Cost? \$3/gal? AdBlue at pump in Germany \$12/gal

Volvo announced surcharge of \$9,600 for 2010 compliance

(complex – dosing rate, DEF freezes at 12F, gasifies at 130F)

Plus \$7,500 for 2007 compliance → <u>AT system cost equals cost of engine!</u>

NOx modeling

Yoshikawa SAE 2008-01-2413

Zeldo'vich thermal NOx mechanism

$$O + N_2 \le NO + N$$

$$N + O_2 <=> NO + O$$

$$N + OH \ll NO + H$$

ERC 12-step NOx model is based on GRI-Mech v3.11 and includes:

Thermal NOx

Zeldovich, 1946

Prompt NOx around 1000 K. Fenimore, 1979

Extensions

NO can convert HCN and NH₃ | Eberius, 1987

Interaction between NO and Soot

Guo, 2007

ERC 12 step NOx Mechanism

Kong, ASME 2007

SENKIN2 used to predict species histories.

XSENKPLOT used to visualize reaction pathways and identify important reactions and species.

Reduced mechanism validated for test temperatures from 700K to 1100 K and equivalence ratios from 0.3 to 3.0.

Four additional species (N, NO, N₂O, NO₂) and 12 reactions added to ERC PRF mechanism

Detailed mechanism: Smith, GRI-mech, 2005

ERC 12 step NOx Mechanism

Kong, ASME 2007

Diesel spray computation

GRI mechanism results

Reduced mechanism results

Detailed mechanism: Smith, GRI-mech, 2005

CH radical and HCN bridge in fuel-rich regions

Constant
volume
SENKIN
analysis with
ERC n-heptane
mechanism &
GRI ver.3 NOx
mechanism

Absolute Flux normalized to NO by XSENKPLOT

T_{ini}=769K P_{ini}=40bar Time=100ms

Yoshikawa & Reitz, SAE 2008-01-2413

n+no

<=> n2+o

Expanded ERC NOx reaction mechanism

12-step NOx reactions [Sun, 2007]

Main species

N, NO, N₂O, NO₂

Additional 15 reactions with CH and HCN

Yoshikawa & Reitz, SAE 2008-01-2413

```
n+o2
        <=> no+o
                            2.650e+12
                                        .00
                                              6400.0
                            7.333e+13
n+oh
                                        .00
                                              1120.0
        <=> no+h
       <=> n2+o2
                            1.400e+12
                                        .00
                                            10810.0
n2o+o
n2o+o
       <=> 2no
                            2.900e+13
                                        .00 23150.0
n2o+h
        <=> n2+oh
                            4.400e+14
                                        .00
                                            18880.0
n20+oh <=> n2+ho2
                            2.000e+12
                                        .00
                                             21060.0
n2o(+m) <=> n2+o(+m)
                            1.300e+11
                                        .00 59620.0
   low / 6.200e+14
                      .000 56100.00/
   h2/2.00/ h2o/6.00/ ch4/2.00/ co/1.50/ co2/2.00/
ho2+no <=> no2+oh
                            2.110e+12
                                        .00
                                               -480.0
                            1.060e+20 -1.410
no+o+m <=> no2+m
                                                   .0
   h2/2.00/ h2o/6.00/ ch4/2.00/ co/1.50/ co2/2.00/
no2+o
       <=> no+o2
                            3.900e+12
                                        .00
                                               -240.0
no2+h
                            1.320e+14
                                               360.0
        <=> no+oh
                                        .00
ch+n2 <=> hcn+n
                            2.857e+08 1.10
                                            20400.0
                                        .00
ch+no <=> hcn+o
                            5.000e+13
                                                  .0
                                        .00
                                                  .0
ch+no
       <=> n+hco
                            3.000e+13
ch2+no <=> oh+hcn
                                        -.69
                            2.900e+14
                                               760.0
                                        .00
                                            28800.0
ch3+no <=> hcn+h2o
                            9.600e+13
ch3+n <=> hcn+h2
                                        .15
                                                -90.0
                            3.700e+12
                            3.000E + 13
                                         .00
       <=> h+hco
oh+ch
                                                  .0
                                       2.00
                                              3000.0
oh+ch2 <=>ch+h2o
                            1.130E+07
ch+o2 <=> o+hco
                            3.300E + 13
                                         .00
                                                  .0
ch+h2
       <=> h+ch2
                            1.107E + 08
                                      1.79
                                              1670.0
                            1.713E+13
                                              -755.0
ch+h2o <=> h+ch2o
                                         .00
ch+ch2 <=> h+c2h2
                                        .00
                            4.000E+13
                                                  .0
ch+ch3 <=> h+c2h3
                                        .00
                            3.000E+13
                                                  .0
                            6.000E + 13
                                        .00
ch+ch4 <=> h+c2h4
                                                  .0
ch+co2 <=> hco+co
                            3.400E + 12
                                        .00
                                               690.0
```

3.500e+13

.00

330.0

Expanded ERC NOx reaction mechanism

Additional 22 reactions with NH₃, HNCO, NH₂, and NH

nh3+h	<=> nh2+h2	5.400e+05	2.400	9915.0
nh3+oh	<=> nh2+h2o	5.000e+07	1.600	955.0
nh3+o	<=> nh2+oh	9.400e+06	1.940	6460.0
hcn+oh	<=> hnco+h*	39.60e+00	3.217	8210.7
ch2+no	<=> h+hnco	3.100e+17	-1.380	1270.0
	<=> nh+co2	9.800e+07	1.410	8500.0
hnco+h	<=> nh2+co	2.250e+07	1.700	3800.0
hnco+oh	n <=> nh2+co2	1.550e+12	.000	6850.0
hnco+m	<=> nh+co+m	1.180e+16	.000	84720.0
h2/:	2.00/ h2o/6.00/ ch4/2	2.00/ co/1.50)/ co2/2	2.00/
nh2+o	<=> oh+nh	7.000e+12	.000	.0
nh2+h	<=> nh+h2	4.000e+13	.000	3650.0
nh2+oh	<=> nh+h2o	9.000e+07	1.500	-460.0
hcn+oh	<=> nh2+co	1.600e+02	2.560	9000.0
nh+o	<=> no+h	5.000e+13	.000	.0
nh+h	<=> n+h2	3.200e+13	.000	330.0
nh+oh	<=> n+h2o	2.000e+09	1.200	.0
nh+o2	<=> no+oh	1.280e+06	1.500	100.0
nh+n	<=> n2+h	1.500e+13	.000	.0
nh+no	<=> n2+oh	2.160e+13	230	.0
nh+no	<=> n2o+h	4.160e+14	450	.0
hcn+o	<=> nh+co	2.767e+03	2.640	4980.0
	<=> hcn+nh	1.000e+13	.000	74000.0
		=:0000.		·

^{* 3} reactions were combined into 1 reaction:

hcn+oh<=>hnco+h

hcn+oh<=>hocn+h

hocn+h<=>h+hnco

<u>Influence of Soot Radiation on Combustion and NOx</u>

BW: measured

Musculus, SAE 2005-01-0925

Colored: prediction

Yoshikawa & Reitz, 2009

Influence of Soot Radiation on Combustion and NOx

"NOx bump" not observed in prediction, but reduction in predicted NOx seen with retard of SOI (~ SOI=8 CAD ATDC)

Radiation lowers predicted NOx ~ 7.5 %

Absence of soot lowered predicted NOx ~ 2.5 %

NOx model underpredicts measured NOx

Magnitude sensitive to turbulent Schmidt #

Yoshikawa & Reitz,

Yoshikawa & Reitz, SAE 2008-01-2413

Measured and predicted engine-out NOx as a function of load (Sandia experiments)

ERC 12-step	$\begin{array}{c} \underline{\text{Species}} \\ 4 \\ (\text{N, NO,} \\ \text{N}_2\text{O,} \\ \text{NO}_2) \end{array}$	Reactions 12
ERC 12-step + HCN, CH	6	27
ERC 12-step + HCN, CH, NH ₃ , HNCO, NH ₂ , NH	10	49
GRI v2.11	29	197
GRI v3.11	32	235

Smith, GRI-mech, 2005

Soot Modeling at ERC

Models of soot formation/oxidation – Kennedy, Prog. Energy Comb. Sc., 1997 Soot processes in engines - Tree and Svenson, Prog. Energy Comb. Sc., V2007

Two-step model

Hiroyasu soot formation

Nagle and Strickland-Constable (NSC) oxidation

Net soot mass

 $\dot{\mathbf{M}}_{\mathrm{sf}} = \mathbf{A}_{\mathrm{sf}} \cdot \mathbf{P}^{0.5} \cdot \exp(-\mathbf{E}_{\mathrm{sf}}/\mathbf{RT}) \cdot \mathbf{M}_{\mathrm{C2H2}}$

 $\xrightarrow{\rho_s D_{\text{nom}}} \frac{d(M_s)}{dt} = \dot{M}_{sf} - \dot{M}_{so}$

C₂H₂ soot precursor

 $\rho_s = Soot density = 2 g/cm^3$

 D_{nom} = assumed nominal soot diameter

= 25 nm

 $W_{nsc} = NSC$ oxidation rate/area

 $M_{c2h2} = C_2H_2$ Mass, $M_s =$ Mass of soot

Hiroyasu & Kadota, SAE 760129 Nagle & Strickland-Constable, 1962

"tuning" constant

Performance of two-step soot model

SANDIA spray chamber: Pickett & Siebers, 2004

Vishwanathan & Reitz, SAE 2008-01-1331

Inclusion of PAH chemistry needed for accurate prediction of soot form/oxid.

Performance of two-step soot model

C₂H₂ inception occurs at lift-off location

Inclusion of PAH chemistry needed for accurate prediction of soot form/oxid.

Soot Modeling

Reduced PAH mechanism

Reduced PAH mechanism of Xi & Zhong, 2006 based on detailed mechanism of Wang & Frenklach, 1997 was integrated (20 species and 52 reactions)

A₁ formation through propargyl radical (C₃H₃) Higher aromatics formed through HACA scheme (hydrogen abstraction, carbon addition)

Reaction	Arrhenius parameters-A, n, E. (Units of A in mole- cm-sec-K and units of E in cal/mole)	
$C_3H_3 + C_3H_3 \rightarrow A_1$	2.0E+12, 0.0, 0.0	
A_1 - + $C_4H_4 \leftrightarrow A_2$ + H	2.50E+29, -4.4, 26400.0	
$A_1 + A_1 \rightarrow P_2 + H$	1.10E+23, -2.9, 15890.0	
A_2 -1 + $C_4H_4 \leftrightarrow A_3$ + H	2.50E+29, -4.4, 26400.0	
$A_1C_2H^* + A_1 \leftrightarrow A_3 + H$	1.10E+23, -2.9, 15890.0	
$A_3-4 + C_2H_2 \leftrightarrow A_4 + H$	3.00E+26, -3.6, 22700.0	

 A_1 = benzene, A_2 = naphthalene, P_2 = biphenyl, A_3 = phenanthrene, A_4 = pyrene, A_1 - = phenyl, A_2 -1 = 1-naphthyl, A_3 -4 = 4-phenanthryl, $A_1C_2H^*$ = phenylacetylene radical

PAH species

Vishwanathan & Reitz, ASME 2009

Reduced PAH mechanism implemented considering up to 4 aromatic rings (pyrene)

- A₃ (Phenanthrene) as precursor for formation

Improvement in soot location

Amount of dry-carbon mass locked-up in aromatic precursors small compared to measured soot

Soot model implementation in KIVA

Vishwanathan & Reitz, CST 2010

- Soot inception through A_4 : $C_{16}H_{10}$ $(A_4) \xrightarrow{\omega_1} 16C(s) + 5H_2$ Graphitization $\dot{\omega}_1 = k_1 \cdot [A_A], k_1 = 2000 \{s^{-1}\}\$
- 2. $\underline{C_2H_2}$ assisted surface growth: Leung CNF 1991 $C(s) + C_2H_2 \xrightarrow{\dot{\omega}_2} 3C(s) + H_2$

$$\frac{C_2H_2 \text{ assisted surface growth Leung CNF 1991}}{\dot{\omega}_2 = k_2 \cdot [C_2H_2], k_2 = 9.0 \cdot 10^4 \text{exp(-12100/T)} \cdot \sqrt{S} \quad \{\text{s}^{-1}\}$$

$$S = \pi d_p^2 N \quad \{\text{cm}^{-1}\} \longrightarrow \text{Surface area per unit volume}$$

$$d_p = \left(\frac{6Y_{c(s)}\rho}{\pi \rho_{c(s)}N}\right)^{1/3} \quad \{\text{cm}\} \longrightarrow \text{Particle size}$$

$$V_{c(s)} + C_2H_2 \longrightarrow 3C(s) + H_2$$

$$Y_{c(s)} = \text{soot mass fraction}$$

$$N = \text{soot number density (per cc)}$$

$$\rho_{C(s)} = 2.0 \text{ gm/cm}^3$$

$$M_{c(s)} = MW \text{ of carbon}$$

$$K_{bc} = \text{Boltzmann's constant}$$

$$\rho_{C(S)} = 2.0 \text{ gm/cm}^3$$

 $K_{bc} = Boltzmann's constant$

 $C_a = agglomeration constant = 9$

Mono -disperse locally: All soot in a comp. cell have same diameter

 $nC(s) \xrightarrow{\omega_3} C(s)_n$ Soot coagulation: Leung CNF 1991

$$\dot{\omega}_{3} = 2C_{a} \left(\frac{6M_{c(s)}}{\pi \rho_{c(s)}} \right)^{1/6} \cdot \left(\frac{6K_{bc}T}{\rho_{c(s)}} \right)^{1/2} \cdot \left[\frac{\rho Y_{c(s)}}{M_{c(s)}} \right]^{1/6} \cdot [N]^{11/6}$$
 {particles cm⁻³s⁻¹}

Soot model implementation in KIVA

Vishwanathan & Reitz, CST 2010

O₂ assisted soot oxidation (NSC model): 4.

$$C(s) + \frac{1}{2} O_2 \xrightarrow{\dot{\omega}_4} CO$$

$$\dot{\omega}_4 = \frac{12}{M_{c(s)}} \cdot \left(\left(\frac{K_A P_{O_2}}{1 + K_Z P_{O_2}} \right) \cdot x + K_B P_{O_2} \cdot (1 - x) \right) \cdot S \text{ {mol cm}}^{-3} \text{ s}^{-1}$$

$$x = P_{O_2} / (P_{O_2} + (K_T/K_B))$$

$$K_{\Delta} = 30.0 \cdot \exp(-15800/T) \{ g \text{ cm}^{-2} \text{ s}^{-1} \text{ atm}^{-1} \}$$
 (1-x) = fraction of B sites

$$K_{\mathbf{R}} = 8.0 \cdot 10^{-3} \cdot \exp(-7640/T) \{ \text{g cm}^{-2} \text{ s}^{-1} \text{ atm}^{-1} \}$$
 $P_{O2} = \text{partial pressure of } O_2$

$$K_T = 1.51 \cdot 10^5 \cdot \exp(-49800/T) \{g \text{ cm}^{-2} \text{ s}^{-1}\}$$

$$K_Z = 27.0 \cdot \exp(3000/T) \{atm^{-1}\}$$

x = fraction of A sites

 $K_{A,B,T,Z}$ = rate constants

 X_{OH} = mole fraction of OH

 $\gamma_{OH} = OH \text{ collision efficiency} = 0.13$

Fenimore & Jones, 1967

5. OH assisted oxidation (Modified Fenimore and Jones model):

$$C(s) + OH \xrightarrow{\dot{\omega}_5} CO + \frac{1}{2}H_2 \qquad \dot{\omega}_5 = (12) \cdot 10.58 \cdot \gamma_{OH} \cdot X_{OH} \cdot T^{-1/2} \cdot S \text{ {mol cm}}^{-3} \text{ s}^{-1}$$

Soot model implementation in KIVA

Vishwanathan & Reitz, CST 2010

6. PAH-assisted surface-growth

$$C(s) + PAH_{k,j} \xrightarrow{\dot{\omega}_6} C(s+k) + \frac{\dot{J}}{2}H_2, \dot{\omega}_6 = \gamma_{ks} \cdot \beta_{ks} \cdot \left[PAH_{k,j}\right] \cdot N$$

$$\beta_{ks} = 2.2 \cdot \sqrt{\frac{\pi \cdot K_{bc} \cdot T}{2 \cdot \mu_{i,j}}} \cdot (d_p + d_{PAH})^2 \left\{ cm^3 s^{-1} \right\}$$

$$d_{PAH} = d_A \cdot \sqrt{\frac{2m_i}{3}}$$

k = number of carbon atoms and j = number of hydrogen atoms,

 $\gamma_{ks}\!=0.3$ is the collision efficiency between soot and PAH, $\beta_{ks}\!=\!$ collision frequency,

 d_i = collisional diameter of PAH, d_A = size of single aromatic ring = 1.393 $\sqrt{3}$ Å,

 $\mu_{i,j}$ = Reduced mass of colliding species = Mass of PAH,

 $m_i = mass \ of \ PAH \ expressed \ in terms \ of \ number \ of \ carbon \ atoms$ - k

Most models consider only mono-aromatic benzene as growth species.

Soot model implementation in KIVA

Vishwanathan & Reitz, CST 2010

7. <u>Transport equations:</u>

$$\frac{\partial M}{\partial t} = -\nabla \cdot \left(M \cdot v\right) + \nabla \cdot \left(\frac{\mu}{SC} \nabla \left(\frac{M}{\rho}\right) + \xi \cdot M \cdot \frac{\mu}{\rho} \frac{\nabla T}{T}\right) + \dot{S}_{M} \qquad \xi = 0.75 / (1 + \frac{\pi \eta}{8}), \ \eta = 0.9$$
convection diffusion Thermophoresis Source terms

 $M = \rho Y_{c(s)}$ (soot species density) and N (number density) with N being treated as **passive species**

Thermophoresis term implemented as a source term

$$\begin{split} \dot{S}_{M} &= \left(16\dot{\omega}_{1} + 2\dot{\omega}_{2} + 6\dot{\omega}_{6} - \dot{\omega}_{4} - \dot{\omega}_{5}\right) \cdot M_{c(s)} \quad \{g \text{ cm}^{-3} \text{ s}^{-1}\} \text{ for } \rho Y_{c(s)} \\ \dot{S}_{M} &= \left(16\dot{\omega}_{1} \cdot \frac{M_{c(s)}}{M_{nuci}} - \dot{\omega}_{3}\right) \text{ {particles cm}^{-3} s}^{-1} \} \text{ for } N \\ M_{nuci} &= \frac{\pi}{6} \cdot d_{nuci}^{3} \cdot \rho_{c(s)} \end{split}$$

 $d_{nuci} = 1.25 \text{ nm} (\sim 100 \text{ carbon atoms})$

Soot mass and particle diameter predictions

PAH-1 (21 species and 52 reactions)
PAH-2 (21 species and 208 reactions)

Vishwanathan & Reitz, CST 2010

Effect of injection pressure

SANDIA optical engine – HTC/LTC

Engine	Parameter
Bore x stroke (cm)	13.97 x 15.24
Speed (rpm)	1200
Compression ratio (CR)	11.2:1
Swirl ratio	0.5
Number of nozzle holes	8
Orifice diameter (mm)	0.196
Included angle	152°
Fuel	Diesel #2
Sector angle	45

Expt. Data: Singh, IJER 2007

Vishwanathan & Reitz, CST 2010

	HTC-diff./ premixed	LTC Early/late
Amb. O ₂ %	21	12.7
SOI	-7/-5	-22/0
P _{in} (bar)	2.33/1.92	2.14/2.02
T _{in} (C)	111/47	90/70
Fuel (mg)	61	56
P _{inj} (bar)	1200	1600

Coarse mesh+

SANDIA optical engine – HTC/LTC

Vishwanathan & Reitz, CST 2010

In-cylinder soot formation/oxidation

Difference in HTC and LTC soot amounts well captured

Diffusion to premixed combustion, soot ↓ HTC to LTC, soot ↓

Summary and Future directions

Integration of soot model with multi-component vaporization and chemistry models

Organic fraction modeling:
OF correlates with premixedness

Soot diameter comparisons with TEM measurements obtained from various combustion modes

