
Lecture 6: Spectral Lineshapes
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1. Background introduction
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1. Background introduction
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 How are S12 and ϕ measured? 
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1. Background introduction

 High-resolution absorption experiments
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 Brief overview
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2. Types of line broadening

1. Natural broadening
 Result of finite radiative lifetime

2. Collisional/pressure broadening
 Finite lifetime in quantum state owing to 

collisions

3. Doppler broadening
 Thermal motion

4. Voigt profile
 Convolution of 1-3



 Natural line broadening
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2. Types of line broadening

1. Heisenberg uncertainty principle:

2. In general
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 Natural line broadening
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2. Types of line broadening

3. Typical values
 Electronic transitions:

 Vib-rot transitions

 These are typically much smaller than ∆νD and ∆νC

4. Lineshape function – “Lorentzian” – follows from Fourier transform
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2. Types of line broadening

Lineshape derivation from damped oscillator model (Ref. Demtröder)
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 Collision broadening
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2. Types of line broadening

1. Also lifetime limited – time set by collision time interval
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 Collision broadening
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2. Types of line broadening

1. Also lifetime limited – time set by collision time interval

2. Lineshape function – Lorentzian

3. Crude approximation
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2. Types of line broadening

Example: Pressure broadening of CO

R(9) line of CO’s 2nd overtone, 50ppm in Air, 300K, 1.0atm
Species population: 77% N2, 20% O2, 2% H2O (85% humidity) 380ppm CO2

Species, A Mole Fraction, XA 2γCO-A (300K) cm-1/atm

N2 0.77 0.116

H2O 0.02 0.232

CO 50e-6 0.128

CO2 380e-6 0.146

O2 0.21 0.102
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 Collision broadening
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2. Types of line broadening

Some collisional broadening coefficients 2γ [cm-1/atm] in Ar and N2 at 300K

Species Wavelength [nm] Ar N2

Na 589 0.70 0.49
K 770 1.01 0.82

Rb 421 2.21 1.51
OH 306 0.09 0.10
NH 335 0.038
NO 225 0.50 0.58
NO 5300 0.09 0.12
CO 4700 0.09 0.11

HCN 3000 0.12 0.24

Some collisional broadening coefficients 2γ [cm-1/atm] in Ar and N2 at 2000K
Species00 Wavelength [nm] Ar N2

NO 225 0.14 0.14
OH 306 0.034 0.04
NH 335 0.038



 Doppler broadening
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2. Types of line broadening

1. Moving molecules see different frequency (Doppler shift)

2. Gaussian velocity distribution function (leads to Gaussian ϕ ν )
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Maxwellian velocity distribution



 Stark broadening
 Important in charged gases, i.e., plasmas.
 Coulomb forces perturb energy levels

 Types of instrument broadening
 Instruments have insufficient resolution
 Powerful lasers can perturb populations away from equilibrium 

(saturation effect)
 Transit-time broadening

 Another type of lifetime-limited broadening is transit-time 
broadening
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2. Types of line broadening

Reference: Demtröder p.85-p.88
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2. Types of line broadening

1st Example:
T = 300K, M = 30g/mole, P = 1atm
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2nd Example:
T = 2700K, M = 30g/mole, P = 1atm

11 cm03.0~cm11.0~   CD 

 Electronic transition
(λ=600nm, ν=5x1014s-1)

 Vib-rot transition
(λ=6μm, ν=5x1013s-1)

11 cm03.0~cm01.0~   CD 
~T1/2 ~T-1/2

 λIR=10λvis



 Conclusions

 Doppler broadening most significant at:

 Collision broadening most significant at:

 Many conditions require consideration of both effects
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2. Types of line broadening

Low P, high T, small λ

High P, low T, large λ

Together  Voigt profile!



3. Voigt Profiles

1. Dominant types of broadening

 Collision broadening

 Doppler broadening

2. Voigt profile

3. Line-shifting mechanisms
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 Collision broadening review

 Lorentzian form “lifetime limited”



 Typical value of 2γA ~ 0.1cm-1/atm (or 0.3x1010s-1/atm)

 A type of “Homogenous broadening”, i.e., same for all molecules of 
absorbing species
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3.    Voigt profiles
3.1. Dominant types of broadening
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3.    Voigt profiles
3.1. Dominant types of broadening
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 Comparison of ϕD and ϕC (for same ∆ν(FWHM))

 Some exceptions/improved models
 Collision narrowing (low-pressure phenomenon)

 Galatry profiles, others, with additional parameters
 Stark broadening  Plasma phenomenon
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3.    Voigt profiles 
3.1. Dominant types of broadening

 Both have same area (unity)
 Peak heights

for
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Ready to combine Doppler & collision broadening; done via Voigt profile



 Physical argument
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3.2. Voigt profile

The physical argument employed in establishing the Voigt profile is that the 
effects of Doppler & collision broadening are decoupled. Thus we argue that 
every point on a collision-broadened lineshape is further broadened by 
Doppler effects.

Convolution:
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3.2. Voigt profile

Notes:

1. , so that

2.

3.
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, the line-center 
spec. abs. coeff. for 
Doppler broadening

 0Dk

     
       aa

aaaV

DV erfcexp
erfcexp0,

2
00

2







Recall:  Sk 

  Dw   /2ln2 0

 
 
   00

,


 

DD

V

k
k

waV



a=0
(pure Doppler)

a=1

a=2

0.83

a=1:
a=2:

   
    257.0erfcexp

43.0erfcexp
2

2





aa
aa

 

 

 
 

 














 



waV

ywa
dyya

D

D
V ,exp2ln2

22

2

0







the “Voigt function” (V≤1)



 Voigt table
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3.2. Voigt profile



 Procedure
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3.2. Voigt profile

 Given: T, M, ν0, P, σ, or 2γ
 Desire: ϕ(ν)

1. Compute: ∆νD and ϕD(ν0)
2. Compute: ∆νC

3. Compute:
4. Pick w, enter table (for a) and obtain
5. Solve for ν – ν0 (and hence ν) for that w
6. Results: ϕ(ν) vs ν – ν0

DCa   /2ln
   00 //  DDkk 



 Procedure

 Refinements
 Galatry profiles (collision narrowing)
 Berman profiles (speed-dependent broadening)
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3.2. Voigt profile

 Given: T, M, ν0, P, σ, or 2γ
 Desire: ϕ(ν)

1. Compute: ∆νD and ϕD(ν0)
2. Compute: ∆νC

3. Compute:
4. Pick w, enter table (for a) and obtain
5. Solve for ν – ν0 (and hence ν) for that w
6. Results: ϕ(ν) vs ν – ν0

DCa   /2ln
   00 //  DDkk 



 Pressure shift of absorption lines

 Doppler shift
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3.    Voigt profiles
3.3. Line shifting mechanisms

 Interaction between two collision partners can have a perturbing 
effect on the intermolecular potential of the molecule

 differences in the energy level spacings
 pressure shift
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Notes:

1. While 2γ>0, δ can be + or –

2. E.g., average values for IR H2O 

spectra: δ = –0.017cm-1/atm, M=0.96
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u = |v|cosθ
θ
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 cu /0  ν0

kν Abs. line for static sample

δν = shift in frequency 
required to excite this 
transition!





 Species concentration and pressure

 Temperature
 FWHM of lineshape gives T in Doppler-limited applications
 Two-line technique with non-negligible pressure broadening
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4. Uses of quantitative lineshape measurements

 Integrated absorbance area
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4. Uses of quantitative lineshape measurements

 1st Example: Spectrally resolved absorption of sodium (Na) in a heated cell

λ = 589nm, T = 1600K, P = 1atm
1) Find

2) Find
3) Find Pi

   
 0

0
00

/ln/1


 IILk 

 

  1cm21.0
1600
300K3002

K16002









P

PC

  117 cm16978cm10589  

  
1

2/1
17

cm10.0
23

1600cm169781017.7













 D

  75.1
10.0

21.02ln2ln






D

Ca



Interpolate Voigt table

    2852.00,75.1, VwaV

  cm39.92ln
10.0
22ln2

0 






D

D

     
cm68.22852.039.9

000


 VD 

Solve for Pi using
 0


S
kPi 

What is PNa?

Could also have solved for T from lineshape data



 Examples
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4. Uses of quantitative lineshape measurements

 2nd Example: Atomic H velocity
LIF (Laser Induced Fluorescence) in an arcjet thruster is used to 
measure the Doppler shift of atomic hydrogen at 656nm.

Doppler shift: δν = 0.70cm-1

The corresponding velocity component is found

m/s13800
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cm70.0m/s103
1
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 CW laser strategies for multi-parameter measurements of high-
speed flows containing NO

30

5. Working examples - 1

Schematic for NO 
LIF experiments



 CW laser strategies for multi-parameter measurements of high-
speed flows containing NO
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5. Working examples - 1



 TDL mass flux sensor
 Full-scale aero-engine inlet 
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5. Working examples - 2



 TDL mass flux sensor
 Sensor tests in Pratt and Whitney engine inlet 
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5. Working examples - 2

 Bellmouth installed on inlet of commercial engine (Airbus 318)
 Sensor hardware remotely operated in control room
 TDL beams mounted in engine bellmouth



 TDL mass flux sensor
 P & W mass flux versus TDL sensor measurements 
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5. Working examples - 2

 TDL data agrees well (1.2% in V and 1.5% in ρ) w/ test stand instrumentation
 Flow model employed to account for non-uniformities
 Success in non-uniform flow suggest other potential applications



Next: Electronic Spectra of Diatomics

 Term Symbols, Molecular Models
 Rigid Rotor, Symmetric Top
 Hund’s Cases
 Quantitative Absorption


