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Short course outine:  
 

Engine fundamentals and performance metrics, computer modeling supported  

by in-depth understanding of fundamental engine processes and detailed  

experiments in engine design optimization. 
 

Day 1 (Engine fundamentals) 

   Part 1: IC Engine Review, 0, 1 and 3-D modeling 

   Part 2: Turbochargers, Engine Performance Metrics  

Day 2 (Combustion Modeling) 

   Part 3: Chemical Kinetics, HCCI & SI Combustion 

   Part 4: Heat transfer, NOx and Soot Emissions 

Day 3 (Spray Modeling) 

   Part 5: Atomization, Drop Breakup/Coalescence 

   Part 6: Drop Drag/Wall Impinge/Vaporization/Sprays 

Day 4 (Engine Optimization) 

   Part 7: Diesel combustion and SI knock modeling 

   Part 8: Optimization and Low Temperature Combustion 

Day 5 (Applications and the Future) 

   Part 9: Fuels, After-treatment and Controls 

   Part 10: Vehicle Applications, Future of IC Engines 

Part 2: Turbochargers, Engine Performance Metrics  
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Turbocharging 

Improved 

Part 2: Turbochargers, Engine Performance Metrics  

Pulse-driven turbine was invented and  

patented in 1925 by Büchi to increase 

the amount of air inducted into the engine. 

- Increased engine power more than offsets  

  losses due to increased back pressure 

- Need to deal with turbocharger lag 



Turbocharging 

Purpose of turbocharging or supercharging is to increase inlet air density,  

-  increase amount of air in the cylinder.   
 

Mechanical supercharging 

 - driven directly by power from engine. 
 

Turbocharger - connected compressor/turbine 

 - energy in exhaust used to drive turbine.  
 

Supercharging necessary in two-strokes  

for effective scavenging:  

     -  intake P > exhaust P 

     - crankcase used as a pump 
 

Some engines combine engine-driven and  

mechanical (e.g., in two-stage configuration).   
 

Intercooler after compressor  

    - controls combustion air temperature.  
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Turbocharging 
 

Energy in exhaust is used to drive 

turbine which drives compressor 
 

 

 

 

 

 

 

 

 

 

 

 

 

Wastegate used to by-pass turbine 
 

Charge air cooling after compressor 

further increases air density 

  - more air for combustion 
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Regulated two-stage turbocharger 

Duplicated Configuration per Cylinder Bank 
 

EGR Cooler 

EGR Cooler 

EGR Valve 

EGR Valve 

LP stage Turbo-Charger 

with Bypass 

LP stage Turbo-Charger 

with Bypass 

HP stage Turbo 

charger 

HP stage Turbo 

charger 

Regulating valve 

Regulating valve Charge Air 

Cooler 

Charge Air 

Cooler 

Compressor  

Bypass 

Compressor  

Bypass 

LP TURBINE 

Regulating Valve 

LP Stage Bypass 

HP TURBINE Compressor Bypass 

GT-Power R2S Turbo Circuit 
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Intercooler for IVC temperature control 
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Centrifugal compressor typically used in 

automotive applications  

 

Provides high mass flow rate at  

relatively low pressure ratio ~ 3.5  

  

Rotates at high angular speeds  

- direct coupled with exhaust-driven  

turbine  

- less suited for mechanical 

supercharging 

 

Consists of: 

   stationary inlet casing,  

   rotating bladed impeller,  

   stationary diffuser (w or w/o vanes) 

   collector - connects to intake system   

 

Automotive compressor 
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Compressible flow ï A review 
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        Subsonic nozzle   Subsonic diffuser      Supersonic diffuser Supersonic nozzle 

  dA<0   dA >0   dA <0   dA >0 

from rAV Ą dV>0   dV <0   dV <0   dV >0 
from Euler Ą dP<0   dP >0   dP >0   dP <0 

  kinetic energy          pressure recovery   kinetic energy 

Traffic flow behaves like a supersonic flow! 
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Area-velocity relations 



Model passages as compressible flow in converging-diverging nozzles  
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P1 P0 



Application to turbomachinery  

Reduced flow passage 

area 
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Compression in impeller passages  
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Note: use exit static pressure and inlet total  

pressure, because kinetic energy of gas  

leaving compressor is usually not recovered  



Compressor maps 
Work transfer to gas occurs in impeller via change in gas  

angular momentum in rotating blade passage  

Surge limit line  

ï reduced mass flow  

due to periodic flow  

reversal/reattachment in 

passage boundary layers.  

Unstable flow can lead  

to damage 
At high air flow rate,  

operation is limited by  

choking at the minimum  

area point within compressor 
Pressure ratio evaluated  

using total-to-static  

pressures since exit flow 

kinetic energy is not  

recovered 

Non-dimensionalize blade 

tip speed (~ND) by speed  

of sound 

Speed/pressure limit line 

Supersonic flow 

Shock 

wave 

Heywood, Fig. 6-46  
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Compressor maps 
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Compression 

Expansion 

Available work  

(area 5-6-7) 

Blowdown 

Automotive turbines 

P-V diagram showing available exhaust energy 

- turbocharging, turbocompounding, bottoming cycles and  

thermoelectric generators further utilize this available energy  
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Turbochargers 

out 
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Compressor selection 

To select compressor, first determine engine breathing lines.  

The mass flow rate of air through engine for a given pressure ratio is: 

 

= IMP =  PR * atmospheric pressure (no losses) 

= IMT =  Roughly constant for given Speed 

h 
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Engine breathing lines 

Engine Breathing Lines
1.4L Diesel, Air-to-Air AfterCooled, Turbocharged
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Parameter Torque Peak Rated Units

Horsepower 48 69 hp

BSFC 0.377 0.401 lb/hp-hr

A/F 23.8 24.5 none
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. . 



 

Maximum possible closed-cycle  

efficiency (ñideal efficiencyò) 

 

State (1) to (2) isentropic  

(i.e., adiabatic and reversible)  

compression from max (V1) to  

min cylinder volume (V2) 

Compression ratio rc = V1/V2.  

 

State (2) to (3) adiabatic 

and isochoric (constant volume)  

combustion,  

State (3) to (4) isentropic  

expansion. 

  

State (4) to (1) exhaust process   

- available energy is rejected  

- can be converted to mechanical  

or electrical work: 

Ideal engine efficiency �± Otto cycle 
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