

Reciprocating Internal Combustion Engines

Prof. Rolf D. Reitz
Engine Research Center
University of Wisconsin-Madison

2014 Princeton-CEFRC Summer School on Combustion Course Length: 15 hrs

(Mon.- Fri., June 23 – 27, 2014)

Copyright ©2014 by Rolf D. Reitz.

This material is not to be sold, reproduced or distributed without prior written permission of the owner, Rolf D. Reitz.

Short course outine:

Engine fundamentals and performance metrics, computer modeling supported by in-depth understanding of fundamental engine processes and detailed experiments in engine design optimization.

Day 1 (Engine fundamentals)

- Part 1: IC Engine Review, 0, 1 and 3-D modeling
- Part 2: Turbochargers, Engine Performance Metrics

Day 2 (Combustion Modeling)

- Part 3: Chemical Kinetics, HCCI & SI Combustion
- Part 4: Heat transfer, NOx and Soot Emissions

Day 3 (Spray Modeling)

- Part 5: Atomization, Drop Breakup/Coalescence
- Part 6: Drop Drag/Wall Impinge/Vaporization/Sprays

Day 4 (Engine Optimization)

- Part 7: Diesel combustion and SI knock modeling
- Part 8: Optimization and Low Temperature Combustion

Day 5 (Applications and the Future)

- Part 9: Fuels, After-treatment and Controls
- Part 10: Vehicle Applications, Future of IC Engines

Fuels & advanced combustion strategies

Engine	
Base Engine	GM 1.9L Diesel
Geometric Compression Ratio	17.3
Piston Bowl Shape	RCCI
Displacement	0.477 L
Bore/Stroke	82.0 / 90.4 mm
IVC/EVO	-132°/112° ATDC
Swirl Ratio	1.5
Port Fuel Injectors	
Model Number	TFS-89055-1
Inj. Press.	2.5 to 3.5 bar
Rated Flow	25 kg/hr.
Common Rail Injector	
Model	Bosch CRI2.2
Number of Holes	7
Hole Diameter	0.14 mm
Included Angle	148°
Fixed Inj. Press.	500 bar

PRF fuels used: <u>n-heptane & iso-octane</u>

HCCI: Dual-fuel allows CA50 to be varied with fixed intake temperature.

PPC: A gasoline-like reactivity of PRF 94 chosen for both port injection and direct injection – i.e., single fuel PPC.

RCCI: Port injected neat iso-octane and direct injected n-heptane.

<u>Fuel Injector</u>	<u>HCCI</u>	<u>PPC</u>	<u>RCCI</u>
Port Injector #1	PRF 75	PRF 94	PRF 100
Port Injector #2	PRF 100	PRF 94	PRF 100
DI Injector	1	PRF 94	PRF 0

Controllability of advanced combustion strategies

Baseline operating condition

(5.5 bar IMEP & 1500 rev/min)

Inputs	<u>HCCI</u>	PPC	RCCI
Pin [bar]	1.3	1.3	1.3
Tin [C]	50	70	50
Premixed Fuel [%]	100%	79.1%	92.6%
Global PRF #	93	94	92.6
DI Timing [°ATDC]	-	-65°	-45°
Global Phi	0.33	0.34	0.33
Results	<u>HCCI</u>	PPC	<u>RCCI</u>
CA50 [°ATDC]	3.5	2.5	2.2
Gross Ind. Eff. [%]	47.1%	45.6%	47.5%
Comb. Eff. [%]	92.8%	93.1%	91.5%
NOx [g/kg-fuel]	<0.05	<0.05	<0.05
PPRR [bar/°]	14	16	5.8

- Single DI injections for PPC & RCCI
- Ultra-low NOx emissions and high GIE
- RCCI has highest GIE, but lowest η_{comb} , suggesting lower HT losses (lower PPRR)
- Fuel stratification with PPC results in higher PPRR compared to HCCI

(c.f., Dec et al. 2011 low intake pressure (< 2 bar))

Sensitivity to intake temperature

 Each strategy is predominantly controlled by chemical kinetics → sensitive to temperature

- To assess controllability of strategies, try to recover baseline CA50.
- This demonstrates combustion strategy's ability to be controlled in a real world engine on a cycle-bycycle basis (i.e., transient operation and unpredictable environmental conditions).

Dempsey, 2014

Ability to compensate for ΔT

HCCI	-10 C Corrected	Baseline	+10 C Corrected
Global PRF #	91	93	94
CA50 [°ATDC]	3.0	3.5	3.5
NOx [g/kg-fuel]	<0.05	<0.05	<0.05

PPC	-10 C Corrected	Baseline	+10 C Corrected
Premixed Fuel [%]	72.6%	79.1%	95.2%
DI Timing [°ATDC]	-36°	-65°	-65°
CA50 [°ATDC]	3.0	2.5	1.2
NOx [g/kg-fuel]	0.63	<0.05	<0.05

RCCI	-13 C	Baseline	+13 C
NOCI	Corrected	Daseille	Corrected
Premixed Fuel [%]	89%	92.6%	94%
DI Timing [°ATDC]	-45°	-45°	-45°
CA50 [°ATDC]	1.7	2.2	2.7
NOx [g/kg-fuel]	<0.05	<0.05	<0.05

Dempsey, 2014

Ability to compensate for intake temperature – PPC

PPC	-10 C Corrected	Baseline	+10 C Corrected
Premixed Fuel [%]	72.6%	79.1%	95.2%
DI Timing [°ATDC]	-36°	-65°	-65°
CA50 [°ATDC]	3.0	2.5	1.2
NOx [g/kg-fuel]	0.63	<0.05	<0.05

Direct Injection SOI [deg. ATDC]

For PPC with PRF94, advancing SOI timing beyond -65° ATDC or increasing premixed fuel amount has no impact on combustion phasing

Sensitivity to intake pressure

- Critical for transient operation of turbocharged or supercharged engines.
- Dual-Fuel RCCI is **not** as affected by intake pressure as HCCI or PPC.
- Reasons for these observations are not well understood and will be subject of future simulation research.

Ability to compensate for ΔP

HCCI	-10 kPa Corrected	Baseline	+10 kPa Corrected
Global PRF #	90.6	93	94.6
CA50 [°ATDC]	3.0	3.5	3.5
NOx [g/kg-fuel]	<0.05	<0.05	<0.05

PPC	-10 kPa Corrected	Baseline	+10 kPa Corrected
Premixed Fuel [%]	65%	79.1%	94.7%
DI Timing [°ATDC]	-35°	-65°	-65°
CA50 [°ATDC]	3.2	2.5	0.5
NOx [g/kg-fuel]	6.8	<0.05	<0.05

PPC - unable to retard combustion with increased boost

RCCI	-10 kPa	Baseline	+10 kPa
RCCI	Corrected	Daseille	Corrected
Premixed Fuel [%]	91.5%	92.6%	93.5%
DI Timing [°ATDC]	-45°	-45°	-45°
CA50 [°ATDC]	2.2	2.2	2.5
NOx [g/kg-fuel]	<0.05	<0.05	<0.05

RCCI - transient operation

GM 1.9L Engine Specifications

OW TIGE Engine opcomoducino			
Engine Type	EURO IV Diesel		
Bore	82 mm		
Stroke	90.4 mm		
Displacement	1.9 liters		
Cylinder Configuration	Inline 4 4 valves per cylinder		
Swirl Ratio	Variable (2.2-5.6)		
Compression Ratio	17.5		
EGR System	Hybrid High/Low Pressure, Cooled		
ECU (OEM)	Bosch EDC16		
ECU (new)	Drivven		
Common Rail Injectors	Bosch CRIP2-MI 148° Included Angle 7 holes, 440 flow number.		
Port Fuel Injectors	Delphi 2.27 g/s steady flow 400 kPa fuel pressure		

Hydrostatic dynamometer

Dyno

Torque

Cell

(2500 rpm/s)

Step load change: 1 → 4 bar BMEP

RCCI provides considerable transient control since ratio of port to directinjected fuel can be changed on a cycle-by-cycle basis

Comparison of single fuel LTC, PPC and dual fuel RCCI

Three engines operating with different forms of LTC combustion

Case	Diesel LTC ¹	Ethanol PPC ²	Dual-Fuel RCCl ³
Engine	Cummins N14	Scania D12	CAT 3401
Displacement (cm3)	2340	1966	2440
Stroke (mm)	152.4	154	165.1
Bore (mm)	139.7	127.5	137.2
Con. Rod (mm)	304.8	255	261
CR (-)	11.2	14.3:1	16.1
Swirl Ratio (-)	0.5	2.9	0.7
Number of nozzles	8	8	6
Nozzle hole size (µm)	196	180	250

- 1. Singh, CNF 2009
- 2. Manente, SAE 2010-01-0871
- 3. D. A. Splitter, THIESEL 2010

Comparison with single fuel LTC

Diesel LTC

Single early injection at 22° BTDC

1600 bar injection pressure

Diluted intake (~60% EGR)

Ethanol PPC

Single early injection at 60° BTDC

1800 bar injection pressure

No EGR

Dual-fuel RCCI

Port-fuel-injection of low reactivity fuel (gasoline or E85)

Direct-injection of diesel fuel

Split early injections

(SOI1 = 58° BTDC and SOI2 = 37° BTDC)

800 bar injection pressure

Liquid Fuel

Vapor Fuel

Dual-fuel RCCI

Comparison of gasoline-diesel and E85diesel dual-fuel RCCI combustion

For fixed combustion phasing, E85-diesel DF RCCI exhibits significantly reduced RoHR (and therefore peak PRR) compared to gasoline-diesel RCCI allows higher load operation

E85-diesel RCCI combustion has larger spread between most reactive (lowest RON) and least reactive (highest RON)

Comparison between diesel LTC, ethanol PPC, and RCCI

Evolution of key intermediates:

Reaction progress

$$\begin{array}{c} \text{fuel} \rightarrow \underbrace{\text{CH}_2\text{O}}_{\text{first stage}} \rightarrow \begin{array}{c} \text{OH} \\ \text{second stage} \\ \text{combustion} \end{array}$$

E85-diesel RCCI combustion shows a staged consumption of more reactive diesel fuel and less reactive E85

Ethanol and gasoline are not consumed until diesel fuel transitions to second stage ignition

Comparison between diesel LTC, ethanol PPC, and RCCI

Diesel LTC

Earliest combustion phasing and most rapid energy release rate

High reactivity of diesel fuel requires significant charge dilution to maintain appropriate combustion phasing (12.7% Inlet O₂)

Ethanol PPC

Low fuel reactivity and charge cooling results in delayed combustion

Sequential combustion from leanhigh temperature regions to richcool regions results in extended combustion duration

Dual fuel RCCI

Combustion begins only slightly later than diesel LTC

Combustion duration is broad due to spatial gradient in fuel reactivity

Allows highest load operation due to gradual transition from first- to second-stage ignition

RCCI Engine Experiments

Hanson SAE 2010-01-0864 Kokjohn IJER 2011 Kokjohn SAE 2011-01-0357

'Single fuel' RCCI

RCCI is inherently fuel flexible and is promising to control PCI combustion. Can similar results be achieved with a single fuel and an additive?

Splitter et al. (SAE 2010-01-2167) demonstrated single fuel RCCI in a heavy-duty engine using gasoline + Ditertiary-Butyl Peroxide (DTBP)

- 2-Ethylhexyl Nitrate (EHN) is another common cetane improver
 - Contains fuel-bound NO and LTC results have shown increased engine-out NOx (Ickes et al. Energy and Fuels 2009)

Comparison of E10-EHN and Diesel Fuel

Engine experiments performed on ERC GM 1.9L engine

Diesel fuel and splash blended E10-3% EHN mixtures compared under conventional diesel conditions (5.5 bar IMEP, 1900 rev/min)

 Diesel fuel injection parameters adjusted to reproduce combustion characteristics of E10+EHN blend

Ignition Differences

 Diesel fuel SOI must be retarded to match ign. (Consistent with lower CN)

Mixing Differences

 Diesel fuel injection pressure must be increased by 400 bar to reproduce premixed burn

Diesel Fuel

SOIc = -11.5	Pinj = 500 bar
SOIc = -9.25	Pinj = 500 bar
SOIc = -7.9	Pinj = 900 bar

Comparison of E10-EHN and Diesel Fuel

Diesel fuel and E10-EHN compared under conventional diesel conditions (5.5 bar IMEP, 1900 rev/min)

 Diesel fuel injection parameters adjusted to reproduce combustion characteristics of E10+EHN blend

For CDC operation, E10+EHN and diesel fuel show similar NOx and soot

Diesel/Gasoline and E10+EHN RCCI

PFI E10 and direct-injected E10+3% EHN compared to gasoline – diesel RCCI operation

Combustion characteristics of gasolinediesel RCCI reproduced with E10 – E10+3%EHN

 Adjustment to PFI percentage required to account for differences in ignitability

Operating Conditions

DI Fuel	E10+EHN	Diesel	
PFI Fuel	E10	Gasoline	
Net IMEP (bar)	5	5.5	
Engine Speed (RPM)	1900		
Premixed Fuel (% mass)	69	84	
Common Rail SOIc(°ATDC)	-32 to -52		
Injection Pressure (bar)	500 800		
Intake Temperature (C)	65		
Boost Pressure (bar)	1.3		
Swirl Ratio	1.5		
EGR (%)	0		

Performance of E10 and E10+EHN RCCI

Parametric studies performed to optimize efficiency of single-fuel RCCI at 5.5 and 9 bar IMEP

Using a split-injection strategy, performance characteristics of single-fuel + additive RCCI are similar to those of dual-fuel RCCI

Peak efficiency data for E10/E10+EHN shows higher NOx emissions, but levels meet EPA mandates

Soot is very low for all cases

Additive consumption estimate

Light-duty drive cycle average is 55% PFI fuel (i.e., 45% additized fuel)

3% additive level → EHN volume is ~1.4% of the total fuel volume

Similar to DEF levels

Assuming 50 mpg and 10,000 mile oil change intervals, additive tank must be ~2.7 gallons

Natural gas/diesel RCCI

Operating Condition	<u>Low-</u> <u>Mid-Load</u> <u>High-Load</u>		<u>Mid-Load</u>		-Load	
Gross IMEP [bar]	4	9	11	13.5	16	23
Engine Speed [rpm]	800	1300	1370	1460	1550	1800
Intake Press. [bar abs.]	1.00	1.45	1.94	2.16	2.37	3.00
Intake Temp. [°C]	60	60	60	60	60	60

Caterpillar 3401E SCOTE					
2.44					
137.2 x 165.1					
261.6					
16.1:1					
0.7					
-143					
130					
Fuel Injector					
6					
250					
145°					

	_ 30 -	RCCI Operating Points ——Generic Diesel Engine Lug Curve
	2 5 -	
1	H 20 -	
ı	= 호 15 -	•
ı	٦ ₁₀ -	
1	Engine Load, IMEP [bar]	
ı	ш О-	
ł	50	00 750 1000 1250 1500 1750 2000 2250 2500 Engine Speed [rpm]
ı		

ERC KIVA PRF kinetics
NSGA-II MOGA
32 Citizens per
Generation
~9500 Cells @ BDC
UW Condor Convergence after
~40 generations

Design Parameter	<u>Minimum</u>	<u>Maximum</u>
Premixed Methane [%]	0%	100%
DI Diesel SOI 1 [deg ATDC]	-100	-50
DI Diesel SOI 2 [deg ATDC]	-40	20
Diesel Fraction in First Inj. [%]	0%	100%
Diesel Injection Pressure [bar]	300	1500
EGR [%]	0%	60%

GA optimized NOx, Soot, CO, UHC ISFC, PPRR

Design Parameter	4 bar	<u>9 bar</u>	<u>11 bar</u>	13.5 bar	<u>16 bar</u>	<u>23 bar</u>
Engine Speed [rpm]	800	1300	1370	1460	1550	1800
Total Fuel Mass [mg]	40	89	109	133	158	228
Methane [%]	73%	85%	87%	90%	87%	85%
Diesel SOI 1 [deg ATDC]	-52.9	-87.3	-87.2	-79.5	-81.1	-92.7
Diesel SOI 2 [deg ATDC]	-22.5	-38.3	-39.4	-39.6	-39.7	-20.4
Diesel in 1st Inj. [%]	52%	40%	39%	55%	49%	70%
Diesel Inj. Press. [bar]	1300	954	465	822	594	742
EGR [%]	5%	0%	0%	0%	32%	48%

- Clean, efficient operation up to 13.5 bar **IMEP** without needing EGR

Results

* -180° to 180° ATDC

Results						
Soot [g/ikW-hr]	0.004	0.002	0.002	0.002	0.003	0.079
NOx [g/ikW-hr]	0.24	0.25	0.08	0.07	0.15	0.08
CO [g/ikW-hr]	10.8	0.2	0.9	0.8	0.5	6.0
UHC [g/ikW-hr]	10.5	0.5	2.2	2.4	1.5	9.4
η _{aross} [%] *	45.1%	50.4%	50.6%	48.9%	49.2%	44.1%
PPRR [bar/deg]	2.7	5.1	8.1	4.4	5.7	5.0
Ring. Intens. [MW/m²]	0.2	1.5	2.8	1.0	1.8	1.5

Meet EPA 2010 (except soot at high load)

High peak thermal efficiency

- Low PPRR

Extend range to lower/high loads with triple injections

Comparison with gasoline/diesel RCCI

Gasoline/Diesel strategy optimized at 1.75 bar abs. (high boost)
Natural Gas/Diesel used 1.45 bar abs. (low boost)

Each run at both conditions

Gasoline/ Nat. Gas/ **Design Parameter** Diesel **Diesel** 32 Intake Temperature [°C] 60 89 Total Fuel Mass [mg] 94 Low-Reactivity Fuel (Premixed) [%] 89% 85% Diesel SOI 1 [deg ATDC] -87.3 -58.0 Diesel SOI 2 [deg ATDC] -38.3 -37.0Diesel in 1st Inj. [%] 40% 60% **EGR** [%] 0% 43%

Quite similar strategies

Comparison with gasoline/diesel RCCI

	Nat. Gas/	<u>Gasoline/</u>
Design Parameter	Diesel	Diesel
Intake Temperature [°C]	60	32
Total Fuel Mass [mg]	89	94
Low-Reactivity Fuel (Premixed) [%]	85%	89%
Diesel SOI 1 [deg ATDC]	-87.3	-58.0
Diesel SOI 2 [deg ATDC]	-38.3	-37.0
Diesel in 1st Inj. [%]	40%	60%
EGR [%]	0%	43%

2% Efficiency Difference:

Higher in-cyl. temps and comb. in squish

Greater HT Losses

Nieman, 2012

- Can achieve low soot, despite late 3rd injection
- Combustion starts in squish region, so diesel #3 injects into a relatively cool environment
- Fairly small amount injected

Natural gas composition effects

- Optimization studies assumed nat. gas = pure methane
- Ethane can also be in substantial concentration
- 23 bar IMEP triple injection strategy

NG/diesel RCCI summary

- Use of natural gas as the low-reactivity fuel in conjunction with diesel fuel in RCCI combustion investigated.
- Modeling of NG/diesel RCCI showed good combustion phasing could be achieved over a wide range of intake temperatures. Changes in intake T can be accounted for by varying NG/diesel ratio.
- MOGA has been used to develop strategies for RCCI operation from low-load/low-speed to high-load/high-speed.
 - US 2010 HD regulations met, in-cylinder (require 3 injections at high load)
 - High NOx/soot & low(er) comb. eff. observed in low- and high-loads
 - Operation controlled by NG/diesel ratio and injection schedule
- MOGA studies show that utilizing triple injections extends the low- and highload operating ranges
 - Added flexibility = decreased NOx/soot, increased combustion efficiency
- Study of nat. gas composition effects shows that ethane/propane/etc. concentrations have substantial effect on reactivity of NG (i.e., comb. phasing, duration, and completeness).
 - Small amounts (1-3%) enhanced combustion

RCCI after-treatment requirements

Experiments in collaboration with Oak Ridge National Laboratory RCCI operating range covers most of EPA FTP drive area Cooled and/or LP EGR can be used to extend max load with RCCI

 UW H-D engine typically gains 50-100% more load with EGR (CDC - 2007 Opel Astra 1.9L, data from ANL)

Exhaust temperature

RCCI shows 50-100 °C lower turbine inlet temperature than CDC

Reduced exhaust availability for turbocharging and after-treatment systems

Low load operation with RCCI is a challenge with the OEM turbocharger

Lower temperatures drop exhaust enthalpy, increasing pumping work and limiting thermal efficiency Improved turbo-machinery exists for this engine, which could improve the performance

Low EGTs in the FTP driving area are a challenge for oxidation catalyst performance Need 90+% catalyst efficiency to meet HC and CO targets, challenging with EGTs ~ 200 ° C

ORNL RCCI experiments

- SAE 2010 RCCI ("dual-fuel") approach from Univ. of Wisconsin (UW) demonstrated on ORNL multicylinder engine
 - +1.5% efficiency (η_T) and low NOx demonstrated
- ORNL collaborating with UW to compare UW model to ORNL multi-cylinder experimental results

2300 rpm, 4.2 bar BMEP condition (no EGR)

	Conventional Diesel	RCCI (77% Gasoline)
BTE (%)	32.1	33.6
NOx (ppm)	94	7.5
FSN	1.78	0.02
CO (ppm)	423	1512
HC (ppm)	296	2581
Exhaust T (C)	412	260

CDC, PCCI & RCCI NOx and HC emissions

- RCCI PM has high organic content and small size indicative of hydrocarbon-heavy aerosols
- DOC found to be effective in reducing PM emissions and hydrocarbon emissions from RCCI
- Resulting RCCI tailpipe emissions are very low for NOx without NOx catalyst

RCCI is fuel-efficient with emissions that can largely be controlled with DOC alone thus reducing the fuel penalty and cost of the aftertreatment system

CDC, PCCI & RCCI PM emissions

- RCCI particulate matter (PM) found to be very different from conventional and PCCI PM
- PM filter images and size distribution data suggested high organic content in PM from RCCI
- DOC reduces RCCI PM mass significantly

RCCI - low particle number

- Scanning Mobility Particle Sizer (SMPS) shows PM size distribution differs for conventional,
 PCCI, and RCCI particulate
- RCCI PM has bimodal distribution.
- DOC effective at reducing RCCI PM in ~10 nm range but not ~60 nm range

Managed by UT-Battelle for the U.S. Department of Energy

Note: log y-axis for plot on left but linear y-axis for plot on right

Modeling organic fraction - Condensed fuel

Caterpillar SCOTE – 1300 rev/min

Gross IMEP (bar)	5.2	9.0
Premixed Gasoline (Mass %)	68%	89%
Diesel SOI1 (°ATDC)	-58	
Diesel DOI1 (°CA)	5.07	3.9
Diesel SOI2 (°ATDC)	-37	
Diesel DOI2 (°CA)	2.34	1.95
Diesel in Injection #1 (Mass %)	62%	64%
Intake Tank Temperature (°C)	32	
EVO Timing (°ATDC)	130	
IVC Timing (°ATDC)	-143	
Intake Pressure (bar)	1.38	1.75
Exhaust Pressure (bar)	1.45	1.84
EGR Rate (%)	0	43

Premixed iso-octane as gasoline surrogate, nC₁₆H₃₄ as diesel surrogate

Modeling fuel condensation

Peng-Robinson EOS
$$P = \frac{R_u T}{v - b} - \frac{a}{v(v + b) + b(v - b)}$$

RCCI fuel injection - 9bar IMEP

Double injection RCCI – fuel condensation predicted within sprays

Part 9: Fuels, After-treatment and Controls

RCCI particulate – predicted condensed fuel and soot at EVO

Fuel condensation in **RCCI** is predicted to play an important role in PM formation. At low load (5.2 bar IMEP), about 90% of the PM is composed of condensed fuel. At higher load (9.0 bar IMEP), only about 50% of the engine-out PM is composed of condensed fuel, of which 90% is from the premixed gasoline.

VVT to improve LTC catalyst efficiency

	Case 1	Case 2
Intake Manifold Pressure/Bar	1.006	1.02
Fuel Energy/J	275.1	393
Engine Speed/RPM	1,500	
Gasoline Quantity (mg/cyl/cyc)	3.525	6.321
Diesel Quantity (mg/cyl/cyc)	2.619	2.482
Gasoline Start of Injection/Deg.	-227.36	
Diesel Start of Injection/Deg.	-40	-42
Diesel Fuel Rail Pressure/Bar	400	
EGR Fraction (%)	49.9	44.9

VVT to improve LTC catalyst efficiency

Use of VVT - DOC performance

Higher exhaust temperatures with early EVO very beneficial in improving after-treatment efficiency at low load, since exhaust temperatures high enough to activate the catalyst.

UHC and CO conversion by the DOC Predicted to reach almost 100%

Advancing EVO timing increases exhaust temperature, thus reducing EGR needed for same IVC temperature and pressure - improves vol. eff.

Summary and conclusions

- Due to high cost, complexity, and increased fuel/fluid consumption associated with exhaust after-treatment, there is a growing need for advanced combustion development
- Desire for alternatives to petroleum for transportation that have potential for large scale production is growing
- Modify fuel's reactivity to allow sufficient premixing of fuel & air prior to auto-ignition
 - → High octane fuels like gasoline, natural gas or alcohols
- Challenges with stability, <u>controllability</u>, combustion efficiency, and pressure rise rates
- Homogeneous Charge Compression Ignition (HCCI)
 - Advantages: Simple/inexpensive, ultra-low NOx and soot
 - Challenges: High pressure rise rates and lack of direct cycle-to-cycle control over combustion timing
- Partially Premixed Combustion (PPC)
 - Advantages: DI injection timing and PFI/DI fuel split → mechanism for control
 - Challenges: Lack of Φ-sensitivity for gasoline-like fuels at low pressures
- Reactivity Controlled Compression Ignition (RCCI)
 - Advantages: In-cylinder blending of fuel reactivity broadens HR duration and allows global fuel reactivity to be changed. DI injection timing & global fuel reactivity -> mechanism for control
- <u>Ch</u>

Challenges: Consumer acceptance of requiring two fuel tanks